These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 4996861)
1. Radiotherapeutic requirements of 14 MeV fast neutron beams with respect to depth-dose and collimation. Duncan W; Greene D; Major D Eur J Cancer (1965); 1971 May; 7(2):129-34. PubMed ID: 4996861 [No Abstract] [Full Text] [Related]
2. Collimation of 14 MeV neutron beams. Greene D; Major D Eur J Cancer (1965); 1971 May; 7(2):121-7. PubMed ID: 4996860 [No Abstract] [Full Text] [Related]
3. Towards an optimum design of a P-MOS radiation detector for use in high-energy medical photon beams and neutron facilities: analysis of activation materials. Price RA Radiat Prot Dosimetry; 2005; 115(1-4):386-90. PubMed ID: 16381751 [TBL] [Abstract][Full Text] [Related]
4. Depth dose characteristics and beam profile properties of cyclotron-produced neutron beams. Parnell CJ Eur J Cancer (1965); 1974 May; 10(5):335-8. PubMed ID: 4216504 [No Abstract] [Full Text] [Related]
5. [Neutron therapy unit (15 MeV) in the University Radiology Clinic Hamburg-Eppendorf]. Franke HD; Hess A Fortschr Geb Rontgenstr Nuklearmed; 1973; 0(0):suppl:357-9. PubMed ID: 4366700 [No Abstract] [Full Text] [Related]
6. Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy. Mijnheer BJ Br J Radiol; 1978 Feb; 51(602):122-6. PubMed ID: 414808 [TBL] [Abstract][Full Text] [Related]
8. Are high energy proton beams ideal for AB-BNCT? A brief discussion from the viewpoint of fast neutron contamination control. Lee PY; Liu YH; Jiang SH Appl Radiat Isot; 2014 Jun; 88():206-10. PubMed ID: 24721900 [TBL] [Abstract][Full Text] [Related]
9. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs. Chibani O; Ma CM Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965 [TBL] [Abstract][Full Text] [Related]
10. Bremsstrahlung and photoneutron production in a steel shield for 15-22-MeV clinical electron beams. Fujita Y; Myojoyama A; Saitoh H Radiat Prot Dosimetry; 2015 Feb; 163(2):148-59. PubMed ID: 24821930 [TBL] [Abstract][Full Text] [Related]
15. Shielding design for a laser-accelerated proton therapy system. Fan J; Luo W; Fourkal E; Lin T; Li J; Veltchev I; Ma CM Phys Med Biol; 2007 Jul; 52(13):3913-30. PubMed ID: 17664585 [TBL] [Abstract][Full Text] [Related]
16. The design of a practical fast neutron therapy equipment for routine clinical use. Lundberg DA Br J Radiol; 1971 Sep; 44(525):708-12. PubMed ID: 4998844 [No Abstract] [Full Text] [Related]
17. International cooperation with regard to clinical trials of fast neutron radiotherapy. Breur K Eur J Cancer (1965); 1974 Jun; 10(6):385-6. PubMed ID: 4216976 [No Abstract] [Full Text] [Related]
18. Summary of general discussion on technical aspects of fast neutron therapy facilities. Brennan JT Eur J Cancer (1965); 1971 May; 7(2):245-8. PubMed ID: 4996871 [No Abstract] [Full Text] [Related]
19. A 14 MeV neutron tube for radiotherapy. Hillier M; Lomer PD; Stark DS; Wood JD Br J Radiol; 1971 Sep; 44(525):716-9. PubMed ID: 4998846 [No Abstract] [Full Text] [Related]
20. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system. Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]