These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The metabolism of lactate and pyruvate by Pseudomonas AM1. Salem AR; Wagner C; Hacking AJ; Quayle JR J Gen Microbiol; 1973 Jun; 76(2):375-88. PubMed ID: 4723074 [No Abstract] [Full Text] [Related]
4. Regulation of leucine catabolism in Pseudomonas putida. Massey LK; Conrad RS; Sokatch JR J Bacteriol; 1974 Apr; 118(1):112-20. PubMed ID: 4150714 [TBL] [Abstract][Full Text] [Related]
5. Isocitrate lyase from Pseudomonas indigofera. IV. Specificity and inhibition. Rao GR; McFadden BA Arch Biochem Biophys; 1965 Nov; 112(2):294-303. PubMed ID: 5880967 [No Abstract] [Full Text] [Related]
6. D- and L-isoleucine metabolism and regulation of their pathways in Pseudomonas putida. Conrad RS; Massey LK; Sokatch JR J Bacteriol; 1974 Apr; 118(1):103-11. PubMed ID: 4150713 [TBL] [Abstract][Full Text] [Related]
7. Aerobic metabolism of L- -lysine in a Pseudomonas. Coenzyme A-dependent acetylation of L- -lysine. Edmunds HN; Barker HA Arch Biochem Biophys; 1973 Jan; 154(1):460-70. PubMed ID: 4689786 [No Abstract] [Full Text] [Related]
8. Pathways of glycollate metabolism in the blue-green alga Anabaena cylindrica. Codd GA; Stewart WD Arch Mikrobiol; 1973 Dec; 94(1):11-28. PubMed ID: 4363485 [No Abstract] [Full Text] [Related]
10. [Comparative study of the alanine-glyoxylate transaminase and malate synthetase in Neurospora crassa]. Combépine G Bull Soc Chim Biol (Paris); 1969 Dec; 51(9):1309-17. PubMed ID: 5372863 [No Abstract] [Full Text] [Related]
11. Arginine racemase of Pseudomonas graveolens. II. Racemization and transamination of ornithine catalyzed by arginine racemase. Yorifuji T; Misono H; Soda K J Biol Chem; 1971 Aug; 246(16):5093-101. PubMed ID: 5570440 [No Abstract] [Full Text] [Related]
12. Aerobic metabolism of 3,5-diaminohexanoate in a Brevibacterium. Purification of 3,5-diaminohexanoate dehydrogenase and degradation of 3-keto-5-aminohexanoate. Hong SL; Barker HA J Biol Chem; 1973 Jan; 248(1):41-9. PubMed ID: 4692842 [No Abstract] [Full Text] [Related]
13. Metabolism of basic amino acids in Pseudomonas putida. Catabolism of lysine by cyclic and acyclic intermediates. Miller DL; Rodwell VW J Biol Chem; 1971 May; 246(9):2758-64. PubMed ID: 5554291 [No Abstract] [Full Text] [Related]
14. [Accumulation of free extracellular amino acids by Pseudomonas liquefaciens]. Shaposhnikov VN; Orlova IG Dokl Akad Nauk SSSR; 1966 Apr; 167(4):919-22. PubMed ID: 5997280 [No Abstract] [Full Text] [Related]
15. Alkylamine-dependent amino-acid oxidation by lysine monooxygenase--fragmented substrate of oxygenase. Yamamoto S; Yamauchi T; Hayaishi O Proc Natl Acad Sci U S A; 1972 Dec; 69(12):3723-6. PubMed ID: 4509334 [TBL] [Abstract][Full Text] [Related]
16. Induction of separate catabolic pathways for L- and D-lysine in Pseudomonas putida. Chang YF; Adams E Biochem Biophys Res Commun; 1971 Nov; 45(3):570-7. PubMed ID: 5128165 [No Abstract] [Full Text] [Related]
17. The metabolism of gamma-aminobutyric acid (GABA) in the lobster nervous system. I. GABA-glutamate transaminase. Hall ZW; Kravitz EA J Neurochem; 1967 Jan; 14(1):45-54. PubMed ID: 4289446 [No Abstract] [Full Text] [Related]
18. Metabolism of basic amino acids in Pseudomonas putida. Transport of lysine, ornithine, and arginine. Fan CL; Miller DL; Rodwell VW J Biol Chem; 1972 Apr; 247(8):2283-8. PubMed ID: 5019949 [No Abstract] [Full Text] [Related]
19. CO2 fixation and metabolic control in Pseudomonas saccharophila. Donawa AL; Ishaque M; Aleem MI Can J Microbiol; 1973 Oct; 19(10):1243-50. PubMed ID: 4762799 [No Abstract] [Full Text] [Related]