These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 5000290)

  • 1. The mechanism of iron uptake in Bacillus subtilis.
    Peters WJ; Warren RA
    Can J Microbiol; 1970 Dec; 16(12):1285-91. PubMed ID: 5000290
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of synthesis of 2,3-dihydroxybenzoic acid in Bacillus subtilis by iron and a biological secondary hydroxamate.
    Byers BR; Lankford CE
    Biochim Biophys Acta; 1968 Oct; 165(3):563-6. PubMed ID: 4982502
    [No Abstract]   [Full Text] [Related]  

  • 3. The accumulation of phenolic acids and coproporphyrin by iron-deficient cultures of Bacillus subtilis.
    Peters WJ; Warren RA
    Can J Microbiol; 1970 Dec; 16(12):1179-85. PubMed ID: 5000286
    [No Abstract]   [Full Text] [Related]  

  • 4. The regulation of phenolic acid sysdtness in Bacillus subtilis.
    Walsh BL; Peters WJ; Warren RA
    Can J Microbiol; 1971 Jan; 17(1):53-9. PubMed ID: 4995374
    [No Abstract]   [Full Text] [Related]  

  • 5. Repression of phenolic acid-synthesizing enzymes and its relation to iron uptake in Bacillus subtilis.
    Downer DN; Davis WB; Byers BR
    J Bacteriol; 1970 Jan; 101(1):181-7. PubMed ID: 4983647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The iron-uptake system of Bacillus subtilis.
    Walsh BL; Warren RA
    Can J Microbiol; 1971 Feb; 17(2):175-7. PubMed ID: 4994092
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of aconitase by chelation of transition metals causing inhibition of sporulation in Bacillus subtilis.
    Fortnagel P; Freese E
    J Biol Chem; 1968 Oct; 243(20):5289-95. PubMed ID: 4973619
    [No Abstract]   [Full Text] [Related]  

  • 8. Inhibition of iron uptake and deoxyribonucleic acid synthesis by Desferal in a mutant strain of Bacillus subtilis.
    Arceneaux JE; Byers BR
    J Bacteriol; 1977 Mar; 129(3):1639-41. PubMed ID: 403182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enterochelin hydrolysis and iron metabolism in Escherichia coli.
    O'Brien IG; Cox GB; Gibson F
    Biochim Biophys Acta; 1971 Jun; 237(3):537-49. PubMed ID: 4330269
    [No Abstract]   [Full Text] [Related]  

  • 10. An additional step in the transport of iron defined by the tonB locus of Escherichia coli.
    Wang CC; Newton A
    J Biol Chem; 1971 Apr; 246(7):2147-51. PubMed ID: 4929287
    [No Abstract]   [Full Text] [Related]  

  • 11. Itoic acid synthesis in Bacillus subtilis.
    Peters WJ; Warren RA
    J Bacteriol; 1968 Feb; 95(2):360-6. PubMed ID: 4966543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodotorulic acid, a diketopiperazine dihydroxamic acid with growth-factor activity. I. Isolation and characterization.
    Atkin CL; Neilands JB
    Biochemistry; 1968 Oct; 7(10):3734-9. PubMed ID: 4971459
    [No Abstract]   [Full Text] [Related]  

  • 13. Clinical management of thalassemia. The status of new iron chelators.
    Cerami A; Grady RW; Peterson CM; Bhargava KK
    Ann N Y Acad Sci; 1980; 344():425-35. PubMed ID: 6446872
    [No Abstract]   [Full Text] [Related]  

  • 14. Commitment to sporulation and induction of glucose-phosphoenolpyruvate-transferase.
    Freese E; Klofat W; Galliers E
    Biochim Biophys Acta; 1970 Nov; 222(2):265-89. PubMed ID: 4992519
    [No Abstract]   [Full Text] [Related]  

  • 15. [Effect of various ligands on iron transport and binding in isolated intestinal preparations of normal and anemic rats].
    Forth W; Rummel W; Seifen E
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1965 Dec; 252(3):224-41. PubMed ID: 4222736
    [No Abstract]   [Full Text] [Related]  

  • 16. [The effects of various ligands on resorption, distribution and excretion of iron after oral administration].
    Forth W; Pfleger K; Rummel W; Seifen E; Richmond SI
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1965 Dec; 252(3):242-57. PubMed ID: 4286718
    [No Abstract]   [Full Text] [Related]  

  • 17. Structures of the naturally occurring hydroxamic acids, fusarinines A and B.
    Sayer JM; Emery TF
    Biochemistry; 1968 Jan; 7(1):184-90. PubMed ID: 4320437
    [No Abstract]   [Full Text] [Related]  

  • 18. Non-hydrolytic release of iron from ferrienterobactin analogs by extracts of Bacillus subtilis.
    Lodge JS; Gaines CG; Arceneaux JE; Byers BR
    Biochem Biophys Res Commun; 1980 Dec; 97(4):1291-5. PubMed ID: 6452124
    [No Abstract]   [Full Text] [Related]  

  • 19. Hydroxamic acids in nature.
    Neilands JB
    Science; 1967 Jun; 156(3781):1443-7. PubMed ID: 4304945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of L-arginine by arginine hydroxamate-resistant mutants of Bacillus subtilis.
    Kisumi M; Kato J; Sugiura M; Chibata I
    Appl Microbiol; 1971 Dec; 22(6):987-91. PubMed ID: 5002904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.