These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 5000638)

  • 1. Survival of microorganisms in a simulated Martian environment.
    Green RH; Taylor DM; Gustan EA; Fraser SJ; Olson RL
    Space Life Sci; 1971 Aug; 3(1):12-24. PubMed ID: 5000638
    [No Abstract]   [Full Text] [Related]  

  • 2. Space microbiology.
    Taylor GR
    Annu Rev Microbiol; 1974; 28(0):121-37. PubMed ID: 4215364
    [No Abstract]   [Full Text] [Related]  

  • 3. SURVIVAL OF MICROORGANISMS IN A SIMULATED MARTIAN ENVIRONMENT. I. BACILLUS SUBTILIS VAR. GLOBIGII.
    HAGEN CA; HAWRYLEWICZ EJ; EHRLICH R
    Appl Microbiol; 1964 May; 12(3):215-8. PubMed ID: 14170958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival rates of some terrestrial microorganisms under simulated space conditions.
    Koike J; Oshima T; Koike KA; Taguchi H; Tanaka R; Nishimura K; Miyaji M
    Adv Space Res; 1992; 12(4):271-4. PubMed ID: 11538148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of microbial contamination from fractured solids.
    Petersen NJ; Cornell RG; Puleo JR
    Space Life Sci; 1969 Mar; 1(4):531-7. PubMed ID: 5000845
    [No Abstract]   [Full Text] [Related]  

  • 6. Dry-heat resistance of selected psychrophiles.
    Winans L; Pflug IJ; Foster TL
    Appl Environ Microbiol; 1977 Aug; 34(2):150-4. PubMed ID: 410367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On artificial Martian conditions reproduced for microbiological research.
    Zhukova AI; Kondratyev II
    Life Sci Space Res; 1965; 3():120-6. PubMed ID: 12199257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial sterilization in ultra-high vacuum and outer space: a kinetic comparison.
    Brannen JP
    Space Life Sci; 1970 Sep; 2(2):219-20. PubMed ID: 5521788
    [No Abstract]   [Full Text] [Related]  

  • 9. [Glass fibre HEPA filters. II. Communication: Microbiological and physico-chemical researchs on used and unusued, hydrophilic and hydrophobic filter materials in an air conditioning plant (author's transl)].
    RĂ¼den H; Mihm U; Schoemann D; Botzenhart K; Thofern E
    Zentralbl Bakteriol Orig B; 1975 Jul; 160(4-5):525-33. PubMed ID: 242165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Photochemistry of Unprotected DNA and DNA inside Bacillus subtilis Spores Exposed to Simulated Martian Surface Conditions of Atmospheric Composition, Temperature, Pressure, and Solar Radiation.
    Nicholson WL; Schuerger AC; Douki T
    Astrobiology; 2018 Apr; 18(4):393-402. PubMed ID: 29589975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of microorganisms to a simulated Martian environment.
    Hawrylewicz EJ; Hagen CA; Ehrlich R
    Life Sci Space Res; 1965; 3():64-73. PubMed ID: 12035808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microorganisms and biomolecules in space environment experiment ES 029 on Spacelab-1.
    Horneck G; Bucker H; Dose K; Martens KD; Bieger A; Mennigmann HD; Reitz G; Requardt H; Weber P
    Adv Space Res; 1984; 4(10):19-27. PubMed ID: 11539627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues.
    Rettberg P; Rabbow E; Panitz C; Horneck G
    Adv Space Res; 2004; 33(8):1294-301. PubMed ID: 15803617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viability of Bacillus subtilis spores exposed to space environment in the M-191 experiment system aboard Apollo 16.
    Bucker H; Horneck G; Wollenhaupt H; Schwager M; Taylor GR
    Life Sci Space Res; 1974; 12():209-13. PubMed ID: 11911146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia.
    Nicholson WL; Schuerger AC
    Astrobiology; 2005 Aug; 5(4):536-44. PubMed ID: 16078870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival and growth of potential microbial contaminants in severe environments.
    Hawrylewicz EJ; Hagen CA; Ehrlich R
    Life Sci Space Res; 1966; 4():166-75. PubMed ID: 11915886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E.
    Wassmann M; Moeller R; Rabbow E; Panitz C; Horneck G; Reitz G; Douki T; Cadet J; Stan-Lotter H; Cockell CS; Rettberg P
    Astrobiology; 2012 May; 12(5):498-507. PubMed ID: 22680695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental studies concerning planetary quarantine in space.
    Koike J; Hori T; Katahira Y; Koike KA; Tanaka K; Kobayashi K; Kawasaki Y
    Adv Space Res; 1996; 18(1-2):339-44. PubMed ID: 11538982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival of microorganisms in a simulated Martian environment. II. Moisture and oxygen requirements for germination of Bacillus cereus and Bacillus subtilis var. niger spores.
    Hagen CA; Hawrylewicz EJ; Ehrlich R
    Appl Microbiol; 1967 Mar; 15(2):285-91. PubMed ID: 4961769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Biological Threat: The Threat of Planetary Quarantine Failure as a Result of Outer Space Exploration by Humans.
    Sychev VN; Novikova ND; Poddubko SV; Deshevaya EA; Orlov OI
    Dokl Biol Sci; 2020 Jan; 490(1):28-30. PubMed ID: 32342323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.