These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 5000889)
1. Driving point impedance characteristics of the head. Stalnaker RL; Fogle JL J Biomech; 1971 Mar; 4(2):127-39. PubMed ID: 5000889 [No Abstract] [Full Text] [Related]
2. Mathematical model of a head subjected to an angular acceleration. Bycroft GN J Biomech; 1973 Sep; 6(5):487-95. PubMed ID: 4201261 [No Abstract] [Full Text] [Related]
3. Experimental and analytical determinations of the mechanical impedance response of animals to vertical vibration. Edwards RG; Lafferty JF; Knapp CF J Biomech; 1976; 9(1):55-61. PubMed ID: 814125 [No Abstract] [Full Text] [Related]
4. Empirical model of intracranial pressure and head motion resulting from a vibrating seated rhesus. Anderson WR; Boster RA; Willems GC Aviat Space Environ Med; 1978 Jan; 49(1 Pt. 2):240-52. PubMed ID: 414728 [TBL] [Abstract][Full Text] [Related]
5. Impedance methods (apparent mass, driving point mechanical impedance and absorbed power) for assessment of the biomechanical response of the seated person to whole-body vibration. Mansfield NJ Ind Health; 2005 Jul; 43(3):378-89. PubMed ID: 16100915 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical changes in the head associated with penetrating injuries of the maxilla and mandible: an experimental investigation. Tan Y; Zhou S; Jiang H J Oral Maxillofac Surg; 2002 May; 60(5):552-6; discussion 557-8. PubMed ID: 11988935 [TBL] [Abstract][Full Text] [Related]
7. Mathematical model of a head subjected to an angular acceleration. Liu YK; Chandran KB J Biomech; 1974 May; 7(3):319-21. PubMed ID: 4844338 [No Abstract] [Full Text] [Related]
9. The role of motion platform on postural instability and head vibration exposure at driving simulators. Aykent B; Merienne F; Paillot D; Kemeny A Hum Mov Sci; 2014 Feb; 33():354-68. PubMed ID: 24321410 [TBL] [Abstract][Full Text] [Related]
10. A viscoelastic study of scalp, brain, and dura. Galford JE; McElhaney JH J Biomech; 1970 Mar; 3(2):211-21. PubMed ID: 5521539 [No Abstract] [Full Text] [Related]
12. A mathematical model of spinal response to impact. Orne D; Liu YK J Biomech; 1971 Jan; 4(1):49-71. PubMed ID: 5127938 [No Abstract] [Full Text] [Related]
13. Impedance response characteristics of the primate Mucaca mulatta exposed to seated whole-body gz vibration. Smith SD J Biomech; 1992 Aug; 25(8):839-47. PubMed ID: 1639828 [TBL] [Abstract][Full Text] [Related]
14. Vibrations of the temporal bone due to head injury. Dürrer J Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove; 1974; 17(3):271-6. PubMed ID: 4219985 [No Abstract] [Full Text] [Related]
15. The dynamic behaviour of the head and cervical spine during 'whiplash'. McKenzie JA; Williams JF J Biomech; 1971 Dec; 4(6):477-90. PubMed ID: 5162570 [No Abstract] [Full Text] [Related]
16. Evaluation of vertical vibration given to the human foot. Miwa T J Acoust Soc Am; 1988 Mar; 83(3):984-90. PubMed ID: 3356821 [TBL] [Abstract][Full Text] [Related]
17. Comparative biodynamic response of two primate species to the same vibrational environment. Slonim AR Aviat Space Environ Med; 1985 Oct; 56(10):945-55. PubMed ID: 4062769 [TBL] [Abstract][Full Text] [Related]
18. Finite element model study of head impact based on Hybrid III head acceleration: the effects of rotational and translational acceleration. Ueno K; Melvin JW J Biomech Eng; 1995 Aug; 117(3):319-28. PubMed ID: 8618385 [TBL] [Abstract][Full Text] [Related]
19. Correlative studies of dynamics and pathology in whip-lash and head injuries. Sano K; Nakamura N; Hirakawa K; Hashizume Scand J Rehabil Med; 1972; 4(2):47-54. PubMed ID: 4630207 [No Abstract] [Full Text] [Related]
20. Studies on mechanical impedance of the human skull: preliminary report. Gurdjian ES; Hodgson VR; Thomas IM J Biomech; 1970 May; 3(3):239-47. PubMed ID: 5521541 [No Abstract] [Full Text] [Related] [Next] [New Search]