BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 5001847)

  • 1. The enzymic formation of O-acetylhomoserine in Bacillus subtilis and its regulation by methionine and S-adenosylmethionine.
    Brush A; Paulus H
    Biochem Biophys Res Commun; 1971 Nov; 45(3):735-41. PubMed ID: 5001847
    [No Abstract]   [Full Text] [Related]  

  • 2. O-Alkylhomoserine synthesis from O-acetylhomoserine and alcohol.
    Murooka Y; Seto K; Harada T
    Biochem Biophys Res Commun; 1970 Oct; 41(2):407-14. PubMed ID: 5518169
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparative aspects of fatty acid synthesis in Bacillus subtilis and Escherichia coli.
    Butterworth PH; Bloch K
    Eur J Biochem; 1970 Feb; 12(3):496-501. PubMed ID: 4392505
    [No Abstract]   [Full Text] [Related]  

  • 4. THE ACCUMULATION OF O-SUCCINYLHOMOSERINE BY ESCHERICHIA COLI AND SALMONELLA TYPHIMURIUM.
    ROWBURY RJ
    J Gen Microbiol; 1964 Nov; 37():171-80. PubMed ID: 14247742
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of the methionine feedback-sensitive enzyme in mutants of Salmonella typhimurium.
    Lawrence DA
    J Bacteriol; 1972 Jan; 109(1):8-11. PubMed ID: 4550678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of O-alkylhomoserine-forming enzyme involved in methionine biosynthesis in Corynebacterium acetophilum.
    Murooka Y; Harada T
    Biochim Biophys Acta; 1970 Aug; 215(2):333-8. PubMed ID: 5503389
    [No Abstract]   [Full Text] [Related]  

  • 7. Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase.
    Ron EZ; Shani M
    J Bacteriol; 1971 Aug; 107(2):397-400. PubMed ID: 4939759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A SIMPLIFIED METHOD FOR THE DETERMINATION OF ISOLEUCINE AND ITS SIX-CARBON PRECURSORS.
    UZUKA Y; SHIMURA K
    J Biochem; 1964 Dec; 56():611-2. PubMed ID: 14244066
    [No Abstract]   [Full Text] [Related]  

  • 9. Feedback inhibition by methionine and S-adenosylmethionine, and desensitization of homoserine O-acetyltransferase in Brevibacterium flavum.
    Shiio I; Ozaki H
    J Biochem; 1981 May; 89(5):1493-500. PubMed ID: 7275950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The formation of homoserine from methionine in germinating peas.
    Grant DR; Voelkert E
    Can J Biochem; 1971 Jul; 49(7):795-8. PubMed ID: 5557890
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of dimethyl sulfoxide on lysine production by a mutant of Bacillus subtilis with homoserine dehydrogenase activity.
    Kalcheva HO; Shanskaya VO; Smutny J; Maluta SS
    Folia Microbiol (Praha); 1991; 36(5):447-50. PubMed ID: 1821870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S-Adenosylmethionine synthetase deficient mutants of Escherichia coli K-12 with impaired control of methionine biosynthesis.
    Greene RC; Su CH; Holloway CT
    Biochem Biophys Res Commun; 1970 Mar; 38(6):1120-6. PubMed ID: 4908544
    [No Abstract]   [Full Text] [Related]  

  • 13. O-SUCCINYLHOMOSERINE AS AN INTERMEDIATE IN THE SYNTHESIS OF CYSTATHIONINE BY ESCHERICHIA COLI.
    ROWBURY RJ; WOODS DD
    J Gen Microbiol; 1964 Sep; 36():341-58. PubMed ID: 14217349
    [No Abstract]   [Full Text] [Related]  

  • 14. Purification and properties of homoserine transacetylase from Bacillus polymyxa.
    Wyman A; Paulus H
    J Biol Chem; 1975 May; 250(10):3897-903. PubMed ID: 1126938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered ribosomes in spiramycin-resistant mutants of Bacillus subtilis.
    Ahmed A
    Biochim Biophys Acta; 1968 Aug; 166(1):218-28. PubMed ID: 4972350
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural and conformational analogues of L-methionine as inhibitors of the enzymatic synthesis of S-adenosyl-l-methionine. I. Saturated and unsaturated aliphatic amino acids.
    Coulter AW; Lombardini JB; Talalay P
    Mol Pharmacol; 1974 Mar; 10(2):293-304. PubMed ID: 4605146
    [No Abstract]   [Full Text] [Related]  

  • 17. Removing a bottleneck in the Bacillus subtilis biotin pathway: bioA utilizes lysine rather than S-adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction.
    Van Arsdell SW; Perkins JB; Yocum RR; Luan L; Howitt CL; Chatterjee NP; Pero JG
    Biotechnol Bioeng; 2005 Jul; 91(1):75-83. PubMed ID: 15880481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-Adenosylmethionine and tetrahydrofolate-dependent methylation of tRNA in Bacillus subtilis. Incomplete methylations caused by trimethoprim, pactamycin, or chloramphenicol.
    Arnold HH; Schmidt W; Raettig R; Sandig L; Domdey H; Kersten H
    Arch Biochem Biophys; 1976 Sep; 176(1):12-20. PubMed ID: 823871
    [No Abstract]   [Full Text] [Related]  

  • 19. Acetylhomoserine. An intermediate in the fungal biosynthesis of methionine.
    Nagai S; Flavin M
    J Biol Chem; 1967 Sep; 242(17):3884-95. PubMed ID: 6037552
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of furanomycin on the synthesis of isoleucyl-tRNA.
    Tanaka K; Tamaki M; Watanabe S
    Biochim Biophys Acta; 1969 Nov; 195(1):244-5. PubMed ID: 4982424
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.