These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 5002151)

  • 1. The involvement of lecithin and monogalactosyl diglyceride in linoleate synthesis by green and blue-green algae.
    Appleby RS; Safford R; Nichols BW
    Biochim Biophys Acta; 1971 Nov; 248(2):205-11. PubMed ID: 5002151
    [No Abstract]   [Full Text] [Related]  

  • 2. The separation, structure and metabolism of monogalactosyl diglyceride species in Chlorella vulgaris.
    Nichols BW; Moorhouse R
    Lipids; 1969 Sep; 4(5):311-6. PubMed ID: 5823710
    [No Abstract]   [Full Text] [Related]  

  • 3. In vivo biosynthesis of -linolenic acid in plants.
    Kannangara CG; Jacobson BS; Stumpf PK
    Biochem Biophys Res Commun; 1973 May; 52(2):648-55. PubMed ID: 4711178
    [No Abstract]   [Full Text] [Related]  

  • 4. Lipid metabolism in the parasitic and free-living spirochetes Treponema pallidum (Reiter) and Treponema zuelzerae.
    Meyer H; Meyer F
    Biochim Biophys Acta; 1971 Feb; 231(1):93-106. PubMed ID: 4926034
    [No Abstract]   [Full Text] [Related]  

  • 5. The biosynthesis of polyunsaturated fatty acids by photosynthetic tissue. The composition of phosphatidyl choline species in Chlorella vulgaris during the formation of linoleic acid.
    Gurr MI; Brawn P
    Eur J Biochem; 1970 Nov; 17(1):19-22. PubMed ID: 5486580
    [No Abstract]   [Full Text] [Related]  

  • 6. The mechanism of formation of polyunsaturated fatty acids by photosynthetic tissue. The tight coupling of oleate desaturation with phospholipid synthesis in Chlorella vulgaris.
    Gurr MI; Robinson MP; James AT
    Eur J Biochem; 1969 May; 9(1):70-8. PubMed ID: 5785584
    [No Abstract]   [Full Text] [Related]  

  • 7. Linoleate and alpha-linolenate synthesis by isolated spinach (Spinacia oleracea) chloroplasts.
    Roughan PG; Mudd JB; McManus TT; Slack CR
    Biochem J; 1979 Dec; 184(3):571-4. PubMed ID: 540049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inhibition of unsaturated fatty acid biosynthesis in plants by sterculic acid.
    James AT; Harris P; Bezard J
    Eur J Biochem; 1968 Jan; 3(3):318-25. PubMed ID: 5645527
    [No Abstract]   [Full Text] [Related]  

  • 9. On the tight coupling of phospholipid synthesis and fatty acid desaturation in Chlorella vulgaris.
    Gurr MI; Robinson MP; Sword RW; James AT
    Biochem J; 1968 Dec; 110(4):49P-50P. PubMed ID: 5704801
    [No Abstract]   [Full Text] [Related]  

  • 10. Phospholipid composition and synthesis in male rabbit aortas.
    Morin RJ
    Metabolism; 1968 Nov; 17(11):1051-8. PubMed ID: 5724170
    [No Abstract]   [Full Text] [Related]  

  • 11. The enzymic conversion of monogalactosyl monoglycerides to monogalactosyl deglycerides by spinach leaf homogenates.
    Safford R; Appleby RS; Nichols BW
    Biochim Biophys Acta; 1971 Sep; 239(3):509-12. PubMed ID: 5113507
    [No Abstract]   [Full Text] [Related]  

  • 12. Phospholipase A activity in the epidermis.
    Long VJ; Yardley HJ
    J Invest Dermatol; 1972 Mar; 58(3):148-54. PubMed ID: 5013607
    [No Abstract]   [Full Text] [Related]  

  • 13. Degradation of monogalactosyl diglyceride and digalactosyl diglyceride by sheep pancreatic enzymes.
    Bajwa SS; Sastry PS
    Biochem J; 1974 Nov; 144(2):177-87. PubMed ID: 4462578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positional distribution of fatty acids in monogalactosyl diglyceride fractions from leaves and algae. Structural and metabolic studies.
    Safford R; Nichols BW
    Biochim Biophys Acta; 1970 Jun; 210(1):57-64. PubMed ID: 5456046
    [No Abstract]   [Full Text] [Related]  

  • 15. Positional distribution and turnover of fatty acids in phosphatidic acid, phosphinositides, phosphatidylcholine and phosphatidylethanolamine in rat brain in vivo.
    Baker RR; Thompson W
    Biochim Biophys Acta; 1972 Aug; 270(4):489-503. PubMed ID: 4340991
    [No Abstract]   [Full Text] [Related]  

  • 16. Interrelationship between bile lecithin and liver lecithin newly synthesized through phosphatidic acid pathway.
    Sakamoto H; Akino T
    Tohoku J Exp Med; 1972 Jan; 106(1):45-59. PubMed ID: 5012410
    [No Abstract]   [Full Text] [Related]  

  • 17. A simple biochemical method for the preparation of high specific activity ( 14 C) acyl-labelled phosphatidylcholine and other phospholipids.
    Galliard T
    Biochim Biophys Acta; 1972 Apr; 260(4):541-6. PubMed ID: 4337559
    [No Abstract]   [Full Text] [Related]  

  • 18. Synthesis of saturated long chain fatty acids from sodium acetate-1-C14 by Mycoplasma.
    Pollack JD; Tourtellotte ME
    J Bacteriol; 1967 Feb; 93(2):636-41. PubMed ID: 6020566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Incorporation of various hydrogenated precursors into the fatty acids of living mice].
    Rous S; Lüthi L; Burlet MJ; Favarger P
    Biochim Biophys Acta; 1968 May; 152(3):462-71. PubMed ID: 4385360
    [No Abstract]   [Full Text] [Related]  

  • 20. Turnover of the glycerolipids of pumpkin leaves. The importence of phosphatidylcholine.
    Roughan PG
    Biochem J; 1970 Mar; 117(1):1-8. PubMed ID: 5420955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.