BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 5002471)

  • 1. Catabolism of L-arginine by entrapped cells of Streptococcus faecalis ATCC8043.
    Franks NE
    Biochim Biophys Acta; 1971 Nov; 252(2):246-54. PubMed ID: 5002471
    [No Abstract]   [Full Text] [Related]  

  • 2. Immobilization and treatment of Streptococcus faecalis for the continuous conversion of arginine into citrulline.
    Cottenceau G; Dherbomez M; Lubochinsky B; Lettellier F
    Enzyme Microb Technol; 1990 May; 12(5):355-60. PubMed ID: 1367441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interdependence of glucose and arginine catabolism in Streptococcus faecalis R. ATCC 8043.
    Pandey VN
    Biochem Biophys Res Commun; 1980 Oct; 96(4):1480-7. PubMed ID: 6778478
    [No Abstract]   [Full Text] [Related]  

  • 4. Fermentation of agmatine in Streptococcus faecalis: occurrence of putrescine transcarbamoylase.
    Roon RJ; Barker HA
    J Bacteriol; 1972 Jan; 109(1):44-50. PubMed ID: 4621632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of diamines by Enterococcus faecalis is mediated by an agmatine-putrescine antiporter.
    Driessen AJ; Smid EJ; Konings WN
    J Bacteriol; 1988 Oct; 170(10):4522-7. PubMed ID: 3139630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations in the membranes of Streptococcus faecalis related to different cultural conditions.
    Mota JS; Silva MT; Guerra FC
    Arch Mikrobiol; 1972; 83(4):293-302. PubMed ID: 4625787
    [No Abstract]   [Full Text] [Related]  

  • 7. Production of citrulline and ornithine by interferon-gamma treated macrophages.
    Benninghoff B; Lehmann V; Eck HP; Dröge W
    Int Immunol; 1991 May; 3(5):413-7. PubMed ID: 1911530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A turbidimetric and electron microscopic study of the effects of several parameters on the lysis of Streptococcus faecalis by lysozyme.
    Carvalho ME; Gonçalves MH; Silva MT
    Can J Microbiol; 1984 Jul; 30(7):905-15. PubMed ID: 6434170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of arginine as an energy source for the growth of Streptococcus faecalis.
    Deibel RH
    J Bacteriol; 1964 May; 87(5):988-92. PubMed ID: 4959807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginine dihydrolase activity in species of the genus Bacillus revealed by thin-layer chromatography.
    Ottow JC
    J Gen Microbiol; 1974 Sep; 84(1):209-13. PubMed ID: 4436643
    [No Abstract]   [Full Text] [Related]  

  • 11. Use of gas chromatography for determining catabolic products of arginine by bacteria.
    Moss CW; Lambert MA; Cherry WB
    Appl Microbiol; 1972 May; 23(5):889-93. PubMed ID: 5031560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the cytoplasmic pH in Streptococcus faecalis.
    Kobayashi H; Murakami N; Unemoto T
    J Biol Chem; 1982 Nov; 257(22):13246-52. PubMed ID: 6815175
    [No Abstract]   [Full Text] [Related]  

  • 13. Ultrastructural and chemical alterations induced by dicumarol in Streptococcus faecalis.
    Santos Mota JM; Silva MT; Carvalho Guerra F
    Biochim Biophys Acta; 1971 Oct; 249(1):114-21. PubMed ID: 4110917
    [No Abstract]   [Full Text] [Related]  

  • 14. Arginine metabolism by spiroplasma citri.
    Townsend R
    J Gen Microbiol; 1976 Jun; 94(2):417-20. PubMed ID: 7639
    [No Abstract]   [Full Text] [Related]  

  • 15. Molar growth yields in Streptococcus faecalis var. liquefaciens.
    Beck RW; Shugart LR
    J Bacteriol; 1966 Sep; 92(3):802-3. PubMed ID: 4958779
    [No Abstract]   [Full Text] [Related]  

  • 16. Improved thin-layer technique for detection of arginine dihydrolase among the Pseudomonas species.
    Zolg W; Ottow JC
    Appl Microbiol; 1973 Dec; 26(6):1001-3. PubMed ID: 4767290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous production of L-citrulline by immobilized Pseudomonas putida cells.
    Yamamoto K; Sato T; Tosa T; Chibata I
    Biotechnol Bioeng; 1974 Dec; 16(12):1589-99. PubMed ID: 4441633
    [No Abstract]   [Full Text] [Related]  

  • 18. Lactic acid production by membrane reactors.
    Ohara H; Hiyama K
    Ann N Y Acad Sci; 1990; 613():832-8. PubMed ID: 2127523
    [No Abstract]   [Full Text] [Related]  

  • 19. Turnover of bacterial cell wall peptidoglycans.
    Boothby D; Daneo-Moore L; Higgins ML; Coyette J; Shockman GD
    J Biol Chem; 1973 Mar; 248(6):2161-9. PubMed ID: 4632249
    [No Abstract]   [Full Text] [Related]  

  • 20. A transmembrane pH gradient in Streptococcus faecalis: origin, and dissipation by proton conductors and N,N'-dicyclohexylcarbodimide.
    Harold FM; Pavlasová E; Baarda JR
    Biochim Biophys Acta; 1970; 196(2):235-44. PubMed ID: 4244306
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.