BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 500560)

  • 1. Mechanism of acetate synthesis from CO2 by Clostridium acidiurici.
    Waber LJ; Wood HG
    J Bacteriol; 1979 Nov; 140(2):468-78. PubMed ID: 500560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO 2 .
    Andreesen JR; Schaupp A; Neurauter C; Brown A; Ljungdahl LG
    J Bacteriol; 1973 May; 114(2):743-51. PubMed ID: 4706193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total synthesis of acetate from CO2. VII. Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2.
    Schulman M; Ghambeer RK; Ljungdahl LG; Wood HG
    J Biol Chem; 1973 Sep; 248(18):6255-61. PubMed ID: 4730320
    [No Abstract]   [Full Text] [Related]  

  • 4. Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum.
    O'Brien WE; Ljungdahl LG
    J Bacteriol; 1972 Feb; 109(2):626-32. PubMed ID: 5058446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total synthesis of acetate from CO 2 . V. Determination by mass analysis of the different types of acetate formed from 13 CO 2 by heterotrophic bacteria.
    Schulman M; Parker D; Ljungdahl LG; Wood HG
    J Bacteriol; 1972 Feb; 109(2):633-44. PubMed ID: 5058447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate.
    Pezacka E; Wood HG
    Arch Microbiol; 1984 Jan; 137(1):63-9. PubMed ID: 6424623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total synthesis of acetate from CO2. I. Co-methylcobyric acid and CO-(methyl)-5-methoxybenzimidazolylcobamide as intermediates with Clostridium thermoaceticum.
    Ljungdahl L; Irion E; Wood HG
    Biochemistry; 1965 Dec; 4(12):2771-80. PubMed ID: 5880685
    [No Abstract]   [Full Text] [Related]  

  • 8. The conversion of carbon dioxide to acetate. I. The use of cobalt-methylcobalamin as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum.
    Poston JM; Kuratomi K; Stadtman ER
    J Biol Chem; 1966 Sep; 241(18):4209-16. PubMed ID: 5924642
    [No Abstract]   [Full Text] [Related]  

  • 9. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum.
    Diekert GB; Thauer RK
    J Bacteriol; 1978 Nov; 136(2):597-606. PubMed ID: 711675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycine synthase of the purinolytic bacterium, Clostridium acidiurici. Purification of the glycine-CO2 exchange system.
    Gariboldi RT; Drake HL
    J Biol Chem; 1984 May; 259(10):6085-9. PubMed ID: 6427207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The conversion of carbon dioxide to acetate. II. The role of alpha-ketoisovalerate in the synthesis of acetate by Clostridium thermoaceticum.
    Kuratomi K; Stadtman ER
    J Biol Chem; 1966 Sep; 241(18):4217-23. PubMed ID: 5924643
    [No Abstract]   [Full Text] [Related]  

  • 12. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum.
    Hsu TD; Lux MF; Drake HL
    J Bacteriol; 1990 Oct; 172(10):5901-7. PubMed ID: 2120194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrahydrofolate enzyme levels in Acetobacterium woodii and their implication in the synthesis of acetate from CO2.
    Tanner RS; Wolfe RS; Ljungdahl LG
    J Bacteriol; 1978 May; 134(2):668-70. PubMed ID: 659361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total synthesis of acetate from CO2. 3. Inhibition by alkylhalides of the synthesis from CO2, methyltetrahydrofolate, and methyl-B12 by Clostridium thermoaceticum.
    Ghambeer RK; Wood HG; Schulman M; Ljungdahl L
    Arch Biochem Biophys; 1971 Apr; 143(2):471-84. PubMed ID: 5145645
    [No Abstract]   [Full Text] [Related]  

  • 15. INCORPORATION OF C14 FROM CARBON DIOXIDE INTO SUGAR PHOSPHATES, CARBOXYLIC ACIDS, AND AMINO ACIDS BY CLOSTRIDIUM THERMOACETICUM.
    LJUNGDAHL L; WOOD HG
    J Bacteriol; 1965 Apr; 89(4):1055-64. PubMed ID: 14276095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life with CO or CO2 and H2 as a source of carbon and energy.
    Wood HG
    FASEB J; 1991 Feb; 5(2):156-63. PubMed ID: 1900793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purine and glycine metabolism by purinolytic clostridia.
    Dürre P; Andreesen JR
    J Bacteriol; 1983 Apr; 154(1):192-9. PubMed ID: 6833177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of corrinoids in the total synthesis of acetate from CO-2 by Clostridium thermoaceticum.
    Ljungdahl L; Irion E; Wood HG
    Fed Proc; 1966; 25(6):1642-8. PubMed ID: 5333065
    [No Abstract]   [Full Text] [Related]  

  • 19. Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum.
    Clark JE; Ragsdale SW; Ljungdahl LG; Wiegel J
    J Bacteriol; 1982 Jul; 151(1):507-9. PubMed ID: 6806250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Sep; 35(37):12119-25. PubMed ID: 8810918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.