BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 500568)

  • 1. Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter.
    Käppeli O; Finnerty WR
    J Bacteriol; 1979 Nov; 140(2):707-12. PubMed ID: 500568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hexadecane-induced vesiculation on the outer membrane of Acinetobacter calcoaceticus.
    Borneleit P; Hermsdorf T; Claus R; Walther P; Kleber HP
    J Gen Microbiol; 1988 Jul; 134(7):1983-92. PubMed ID: 3246592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of the lipids of Acinetobacter species grown on hexadecane.
    Makula RA; Lockwood PJ; Finnerty WR
    J Bacteriol; 1975 Jan; 121(1):250-8. PubMed ID: 1116989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of membranes from a hydrocarbon-oxidizing Acinetobacter sp.
    Scott CC; Makula SR; Finnerty WR
    J Bacteriol; 1976 Jul; 127(1):469-80. PubMed ID: 132429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous degradation of phenol and n-hexadecane by Acinetobacter strains.
    Sun JQ; Xu L; Tang YQ; Chen FM; Wu XL
    Bioresour Technol; 2012 Nov; 123():664-8. PubMed ID: 22939600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N.
    Scott CC; Finnerty WR
    J Bacteriol; 1976 Jul; 127(1):481-9. PubMed ID: 179978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The concentrations of hexadecane and inorganic nutrients modulate the production of extracellular membrane-bound vesicles, soluble protein, and bioemulsifier by Acinetobacter venetianus RAG-1 and Acinetobacter sp. strain HO1-N.
    Leahy JG; Khalid ZM; Quintero EJ; Jones-Meehan JM; Heidelberg JF; Batchelor PJ; Colwell RR
    Can J Microbiol; 2003 Sep; 49(9):569-75. PubMed ID: 14608423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of lipase production during bacterial growth on alkanes.
    Breuil C; Shindler DB; Sijher JS; Kushner DJ
    J Bacteriol; 1978 Feb; 133(2):601-6. PubMed ID: 627533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.
    Jung J; Jang IA; Ahn S; Shin B; Kim J; Park C; Jee SC; Sung JS; Park W
    Microb Ecol; 2015 Nov; 70(4):912-21. PubMed ID: 25956940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial assimilation of hydrocarbons: cellular distribution of fatty acids.
    Makula RA; Finnerty WR
    J Bacteriol; 1972 Oct; 112(1):398-407. PubMed ID: 5079069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic accumulation of hydrocarbons by Acinetobacter species.
    Chung ST; Finnerty WR
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1982 Feb; 15(1):46-57. PubMed ID: 7075335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipopolysaccharide changes and cytoplasmic polyphosphate granule accumulation in Pseudomonas aeruginosa during growth on hexadecane.
    Miguez CB; Beveridge TJ; Ingram JM
    Can J Microbiol; 1986 Mar; 32(3):248-53. PubMed ID: 3085910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Optimization of culture conditions for Acinetobacter calcoaceticus grown on n-alkanes in a laboratory fermenter].
    Fricke B; Bergmann R; Sorger H; Aurich H
    Z Allg Mikrobiol; 1982; 22(6):365-72. PubMed ID: 7136011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and metabolic responses for hexadecane degradation in Acinetobacter oleivorans DR1.
    Jung J; Noh J; Park W
    J Microbiol; 2011 Apr; 49(2):208-15. PubMed ID: 21538240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crude Oil Degrading Fingerprint and the Overexpression of Oxidase and Invasive Genes for n-hexadecane and Crude Oil Degradation in the Acinetobacter pittii H9-3 Strain.
    Wang Y; Wang Q; Liu L
    Int J Environ Res Public Health; 2019 Jan; 16(2):. PubMed ID: 30634699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.
    Singer ME; Finnerty WR
    J Bacteriol; 1985 Dec; 164(3):1011-6. PubMed ID: 4066609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Respiratory activity of bacteria Acinetobacter calcoaceticus TM-31 during assimilation of alkane hydrocarbons].
    Ignatov OV; Grechkina EV; Muratova AIu; Turkovskaia OV; Ignatov VV
    Prikl Biokhim Mikrobiol; 2000; 36(5):555-8. PubMed ID: 11042879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of a novel n-alkane-degrading strain, Acinetobacter haemolyticus AR-46.
    Bihari Z; Pettkó-Szandtner A; Csanádi G; Balázs M; Bartos P; Kesseru P; Kiss I; Mécs I
    Z Naturforsch C J Biosci; 2007; 62(3-4):285-95. PubMed ID: 17542497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of cytochrome P-450 from n-hexadecane-grown Acinetobacter calcoaceticus.
    Müller R; Asperger O; Kleber HP
    Biomed Biochim Acta; 1989; 48(4):243-54. PubMed ID: 2546537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Culturable populations of Acinetobacter can promptly respond to contamination by alkanes in mangrove sediments.
    Rocha LL; Colares GB; Angelim AL; Grangeiro TB; Melo VM
    Mar Pollut Bull; 2013 Nov; 76(1-2):214-9. PubMed ID: 24050127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.