These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 5006111)

  • 21. The reduction of N-hydroxy-4-acetylaminobiphenyl by the intestinal microflora of the rat.
    Wheeler LA; Soderberg FB; Goldman P
    Cancer Res; 1975 Nov; 35(11 Pt 1):2962-8. PubMed ID: 1182690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intestinal azo-reduction and glucuronide conjugation of prontosil.
    Gingell R; Bridges JW
    Xenobiotica; 1973 Sep; 3(9):599-604. PubMed ID: 4763145
    [No Abstract]   [Full Text] [Related]  

  • 23. Metabolism of azo dyes: implication for detoxication and activation.
    Levine WG
    Drug Metab Rev; 1991; 23(3-4):253-309. PubMed ID: 1935573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ecology of Enterococcus faecalis and niche-adapted or non-niche-adapted Enterococcus faecium in continuous-flow anaerobic cultures.
    Poole TL; Byrd JA; Callaway TR; Nisbet DJ
    Foodborne Pathog Dis; 2009 Sep; 6(7):901-6. PubMed ID: 19737066
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction of the prodrug loperamide oxide to its active drug loperamide in the gut of rats, dogs, and humans.
    Lavrijsen K; van Dyck D; van Houdt J; Hendrickx J; Monbaliu J; Woestenborghs R; Meuldermans W; Heykants J
    Drug Metab Dispos; 1995 Mar; 23(3):354-62. PubMed ID: 7628301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature effect on bacterial azo bond reduction kinetics: an Arrhenius plot analysis.
    Angelova B; Avramova T; Stefanova L; Mutafov S
    Biodegradation; 2008 Jun; 19(3):387-93. PubMed ID: 17653820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The relationship between nitro group reduction and the intestinal microflora.
    Wheeler LA; Soderberg FB; Goldman P
    J Pharmacol Exp Ther; 1975 Jul; 194(1):135-44. PubMed ID: 1097637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two sites of azo reduction in the monooxygenase system.
    Peterson FJ; Holtzman JL; Crankshaw D; Mason RP
    Mol Pharmacol; 1988 Oct; 34(4):597-603. PubMed ID: 2845254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction of azo food dyes in cultures of Proteus vulgaris.
    Dubin P; Wright KL
    Xenobiotica; 1975 Sep; 5(9):563-71. PubMed ID: 1103488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decolorization of anthraquinone dye intermediate and its accelerating effect on reduction of azo acid dyes by Sphingomonas xenophaga in anaerobic-aerobic process.
    Lu H; Zhou J; Wang J; Ai H; Zheng C; Yang Y
    Biodegradation; 2008 Sep; 19(5):643-50. PubMed ID: 18074231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cholestyramine-induced inhibition of salicylazosulfapyridine (sulfasalazine) metabolism by rat intestinal microflora.
    Pieniaszek HJ; Bates TR
    J Pharmacol Exp Ther; 1976 Jul; 198(1):240-5. PubMed ID: 6792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Azo reduction of methyl red by neuronal nitric oxide synthase: the important role of FMN in catalysis.
    Miyajima M; Sagami I; Daff S; Taiko Migita C; Shimizu T
    Biochem Biophys Res Commun; 2000 Sep; 275(3):752-8. PubMed ID: 10973794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduction of sulphonated water-soluble azo dyes by caecal microorganisms from the rat.
    Larsen JC; Meyer T; Scheline RR
    Acta Pharmacol Toxicol (Copenh); 1976 Apr; 38(4):353-7. PubMed ID: 946733
    [No Abstract]   [Full Text] [Related]  

  • 34. Redox potential in caecal contents of the rat and azo reduction of salicyl-azo-sulphapyridine.
    Schröder H; Johansson AK
    Xenobiotica; 1973 Apr; 3(4):233-46. PubMed ID: 4147915
    [No Abstract]   [Full Text] [Related]  

  • 35. Enzymatic reduction of tartrazine by Proteus vulgaris from rats.
    Roxon JJ; Ryan AJ; Wright SE
    Food Cosmet Toxicol; 1967 Nov; 5(5):645-56. PubMed ID: 4384481
    [No Abstract]   [Full Text] [Related]  

  • 36. Metabolism by intestinal bacteria: the effect of bile salts on tartrazine azo reduction.
    Allan RJ; Roxon JJ
    Xenobiotica; 1974 Oct; 4(10):637-43. PubMed ID: 4611051
    [No Abstract]   [Full Text] [Related]  

  • 37. The mutagenicity of methyl orange and metabolites produced by intestinal anaerobes.
    Chung KT; Fulk GE; Andrews AW
    Mutat Res; 1978 Nov; 58(2-3):375-9. PubMed ID: 370581
    [No Abstract]   [Full Text] [Related]  

  • 38. The influence of the gut microflora on food toxicity.
    Rowland I
    Proc Nutr Soc; 1981 Jan; 40(1):67-74. PubMed ID: 7010358
    [No Abstract]   [Full Text] [Related]  

  • 39. Metabolism of drugs by microorganisms in the intestine.
    Goldman P; Peppercorn MA; Goldin BR
    Am J Clin Nutr; 1974 Nov; 27(11):1348-55. PubMed ID: 4155602
    [No Abstract]   [Full Text] [Related]  

  • 40. Synthesis and bacterial degradation of an azopolymer.
    Soozandehfar SH; Bragger JL; Martin GP; Lloyd AW
    Int J Pharm; 2000 Mar; 198(1):71-82. PubMed ID: 10722952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.