These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 5006111)

  • 61. Influence of gut microflora on bioavailability.
    Boxenbaum HG; Bekersky I; Jack ML; Kaplan SA
    Drug Metab Rev; 1979; 9(2):259-79. PubMed ID: 39729
    [No Abstract]   [Full Text] [Related]  

  • 62. Gut microbiota: Commensal bacteria and intestinal surgery complications.
    Weber C
    Nat Rev Gastroenterol Hepatol; 2015 Jul; 12(7):371. PubMed ID: 26008128
    [No Abstract]   [Full Text] [Related]  

  • 63. 3,4,5-trimethoxycinnamic acid and related compounds. I. Metabolism by the rat intestinal microflora.
    Meyer T; Scheline RR
    Xenobiotica; 1972 Jul; 2(4):383-90. PubMed ID: 4638263
    [No Abstract]   [Full Text] [Related]  

  • 64. Inhibition of the synthesis of deoxyribonucleic acid in bacteria by 6-(p-hydroxyphenylazo)-2,4-dihydroxypyrimidine. I. Metabolic studies in Streptococcus fecalis.
    Brown NC; Handschumacher RE
    J Biol Chem; 1966 Jul; 241(13):3083-9. PubMed ID: 4957971
    [No Abstract]   [Full Text] [Related]  

  • 65. Intestinal bacterial reduction of 4,4'-dihydroxystilbene to 4,4'-dihydroxybibenzyl.
    Tay LK; Sinsheimer JE
    J Pharm Sci; 1975 Mar; 64(3):471-2. PubMed ID: 1151638
    [No Abstract]   [Full Text] [Related]  

  • 66. Metabolism of N-acylated and O-alkylated drugs by the intestinal microflora during anaerobic incubation in vitro.
    Smith GE; Griffiths LA
    Xenobiotica; 1974 Aug; 4(8):477-87. PubMed ID: 4418213
    [No Abstract]   [Full Text] [Related]  

  • 67. Reduction of tartrazine by a Proteus species isolated from rats.
    Roxon JJ; Ryan AJ; Wright SE
    Food Cosmet Toxicol; 1966 Aug; 4(4):419-26. PubMed ID: 5975247
    [No Abstract]   [Full Text] [Related]  

  • 68. Effect of hibernation on the intestinal flora.
    Barnes EM
    Am J Clin Nutr; 1970 Nov; 23(11):1519-24. PubMed ID: 5475370
    [No Abstract]   [Full Text] [Related]  

  • 69. Degradation of bromazepam by the intestinal microflora.
    Fujii J; Inotsume N; Nakano M
    Chem Pharm Bull (Tokyo); 1987 Oct; 35(10):4338-41. PubMed ID: 2893665
    [No Abstract]   [Full Text] [Related]  

  • 70. Improved isolation of anaerobic bacteria from the mouse cecum by maintaining continuous strict anaerobiosis.
    Spears RW; Freter R
    Proc Soc Exp Biol Med; 1967 Mar; 124(3):903-9. PubMed ID: 6024800
    [No Abstract]   [Full Text] [Related]  

  • 71. Gases produced by human intestinal microflora.
    Calloway DH; Colasito DJ; Mathews RD
    Nature; 1966 Dec; 212(5067):1238-9. PubMed ID: 21090450
    [No Abstract]   [Full Text] [Related]  

  • 72. [Reduction of dantrolene by enteric bacteria].
    Kuroiwa M; Inotsume N; Iwaoku R; Nakano M
    Yakugaku Zasshi; 1985 Aug; 105(8):770-4. PubMed ID: 4087153
    [No Abstract]   [Full Text] [Related]  

  • 73. Gut bacteria and aetiology of breast cancer.
    Lewis R
    Lancet; 1971 Oct; 2(7728):822-3. PubMed ID: 4106643
    [No Abstract]   [Full Text] [Related]  

  • 74. The metabolism of azo compounds: a review of the literature.
    Walker R
    Food Cosmet Toxicol; 1970 Dec; 8(6):659-76. PubMed ID: 5500003
    [No Abstract]   [Full Text] [Related]  

  • 75. [The revelation of toxicity which is caused by some poisonous substances derived from foodstuffs and its modification under nutritional conditions].
    Kimura S
    Yakugaku Zasshi; 1984 May; 104(5):423-39. PubMed ID: 6208351
    [No Abstract]   [Full Text] [Related]  

  • 76. Molecular microencapsulation for in vivo transport of water-insoluble drugs.
    Hernandez-ValdepeƱa I; Braud C; Coudane J; Domurado D; Vert M
    J Control Release; 2005 Jan; 101(1-3):296-7. PubMed ID: 15678609
    [No Abstract]   [Full Text] [Related]  

  • 77. The mechanism of the bacterial oxidation of certain aromatic compounds, together with the preparation and properties of a cell-free enzyme system which accomplishes ring cleavage.
    PARR WH; EVANS RA; EVANS WC
    Biochem J; 1949; 45(4):Suppl, xxix. PubMed ID: 15394460
    [No Abstract]   [Full Text] [Related]  

  • 78. Rates of oxidation of azonaphthalenes.
    BADGER GM; LEWIS GE
    Nature; 1951 Mar; 167(4245):403-4. PubMed ID: 14826768
    [No Abstract]   [Full Text] [Related]  

  • 79. [The redox potential of the intestine as a therapeutic principle].
    SANDER FF
    Landarzt; 1961 Oct; 37():1118-9. PubMed ID: 14496800
    [No Abstract]   [Full Text] [Related]  

  • 80. Biodegradation of Azo Dye Methyl Red by
    Ikram M; Naeem M; Zahoor M; Rahim A; Hanafiah MM; Oyekanmi AA; Shah AB; Mahnashi MH; Al Ali A; Jalal NA; Bantun F; Sadiq A
    Int J Environ Res Public Health; 2022 Aug; 19(16):. PubMed ID: 36011598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.