These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 500643)
21. Inhibition of fungal and mammalian sterol biosynthesis by 2-aza-2,3-dihydrosqualene. Ryder NS; Dupont MC; Frank I FEBS Lett; 1986 Aug; 204(2):239-42. PubMed ID: 3525224 [TBL] [Abstract][Full Text] [Related]
22. Inhibition of 2,3-oxidosqualene cyclases. Taton M; Benveniste P; Rahier A; Johnson WS; Liu HT; Sudhakar AR Biochemistry; 1992 Sep; 31(34):7892-8. PubMed ID: 1510977 [TBL] [Abstract][Full Text] [Related]
23. Inhibition of 2,3-oxidosqualene cyclase and sterol biosynthesis by 10- and 19-azasqualene derivatives. Viola F; Brusa P; Balliano G; Ceruti M; Boutaud O; Schuber F; Cattel L Biochem Pharmacol; 1995 Sep; 50(6):787-96. PubMed ID: 7575639 [TBL] [Abstract][Full Text] [Related]
24. Synthesis and inhibition studies of sulfur-substituted squalene oxide analogues as mechanism-based inhibitors of 2,3-oxidosqualene-lanosterol cyclase. Stach D; Zheng YF; Perez AL; Oehlschlager AC; Abe I; Prestwich GD; Hartman PG J Med Chem; 1997 Jan; 40(2):201-9. PubMed ID: 9003518 [TBL] [Abstract][Full Text] [Related]
25. Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase by 15 alpha-fluorolanost-7-en-3 beta-ol. A mechanism-based inhibitor of cholesterol biosynthesis. Trzaskos JM; Magolda RL; Favata MF; Fischer RT; Johnson PR; Chen HW; Ko SS; Leonard DA; Gaylor JL J Biol Chem; 1993 Oct; 268(30):22591-9. PubMed ID: 7693673 [TBL] [Abstract][Full Text] [Related]
26. Structural and stereoelectronic requirements for the inhibition of mammalian 2,3-oxidosqualene cyclase by substituted isoquinoline derivatives. Barth MM; Binet JL; Thomas DM; de Fornel DC; Samreth S; Schuber FJ; Renaut PP J Med Chem; 1996 Jun; 39(12):2302-12. PubMed ID: 8691425 [TBL] [Abstract][Full Text] [Related]
27. Squalene analogues containing isopropylidene mimics as potential inhibitors of pig liver squalene epoxidase and oxidosqualene cyclase. Sen SE; Prestwich GD J Med Chem; 1989 Sep; 32(9):2152-8. PubMed ID: 2769687 [TBL] [Abstract][Full Text] [Related]
28. Inactivation and activation of various membranal enzymes of the cholesterol biosynthetic pathway by digitonin. Eilenberg H; Klinger E; Przedecki F; Shechter I J Lipid Res; 1989 Aug; 30(8):1127-35. PubMed ID: 2504860 [TBL] [Abstract][Full Text] [Related]
29. Chloroquine inhibits cyclization of squalene oxide to lanosterol in mammalian cells. Chen HW; Leonard DA J Biol Chem; 1984 Jul; 259(13):8156-62. PubMed ID: 6429139 [TBL] [Abstract][Full Text] [Related]
30. 2,3-Oxidosqualene cyclase: from azasqualenes to new site-directed inhibitors. Cattel L; Ceruti M; Balliano G; Viola F; Grosa G; Rocco F; Brusa P Lipids; 1995 Mar; 30(3):235-46. PubMed ID: 7791532 [TBL] [Abstract][Full Text] [Related]
31. Modulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by azole antimycotics requires lanosterol demethylation, but not 24,25-epoxylanosterol formation. Favata MF; Trzaskos JM; Chen HW; Fischer RT; Greenberg RS J Biol Chem; 1987 Sep; 262(25):12254-60. PubMed ID: 3624255 [TBL] [Abstract][Full Text] [Related]
32. Inhibitory activity of 8-azadecalin derivatives towards 2,3-oxidosqualene:lanosterol cyclases from baker's yeast and pig's liver. Hoshino T; Kobayashi N; Ishibashi E; Hashimoto S Biosci Biotechnol Biochem; 1995 Apr; 59(4):602-9. PubMed ID: 7772824 [TBL] [Abstract][Full Text] [Related]
33. Lanosterol biosynthesis in the prokaryote Methylococcus capsulatus: insight into the evolution of sterol biosynthesis. Lamb DC; Jackson CJ; Warrilow AG; Manning NJ; Kelly DE; Kelly SL Mol Biol Evol; 2007 Aug; 24(8):1714-21. PubMed ID: 17567593 [TBL] [Abstract][Full Text] [Related]
34. 22,23-Epoxy-2-aza-2,3-dihydrosqualene derivatives: potent new inhibitors of squalene 2,3-oxide-lanosterol cyclase. Viola F; Ceruti M; Balliano G; Caputo O; Cattel L Farmaco; 1990 Sep; 45(9):965-78. PubMed ID: 2282128 [TBL] [Abstract][Full Text] [Related]
35. Further characterization of a Chinese hamster ovary cell mutant requiring cholesterol and unsaturated fatty acid for growth. Chin J; Chang TY Biochemistry; 1982 Jun; 21(13):3196-202. PubMed ID: 6125210 [No Abstract] [Full Text] [Related]
36. Effect of a supernatant protein on microsomal squalene epoxidase and 2,3-oxidosqualene-lanosterol cyclase. Saat YA; Bloch KE J Biol Chem; 1976 Sep; 251(17):5155-60. PubMed ID: 956181 [TBL] [Abstract][Full Text] [Related]
38. Biosynthetic Mechanism of Lanosterol: Cyclization. Chen N; Wang S; Smentek L; Hess BA; Wu R Angew Chem Int Ed Engl; 2015 Jul; 54(30):8693-6. PubMed ID: 26069216 [TBL] [Abstract][Full Text] [Related]
39. Inhibitors of sterol synthesis. Studies of the metabolism of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one in Chinese hamster ovary cells and its effects on activities of early enzymes in cholesterol biosynthesis. Pajewski TN; Pinkerton FD; Miller LR; Schroepfer GJ Chem Phys Lipids; 1988 Oct; 48(3-4):153-68. PubMed ID: 2907421 [TBL] [Abstract][Full Text] [Related]
40. Down-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA levels and synthesis in syrian hamster C100 cells by the oxidosqualene cyclase inhibitor [4'-(6-allyl-ethyl-amino-hexyloxy)-2'-fluoro-phenyl]-(4-bromophenyl)-me thanone (Ro 48-8071): comparison to simvastatin. Peffley DM; Gayen AK; Morand OH Biochem Pharmacol; 1998 Aug; 56(4):439-49. PubMed ID: 9763219 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]