These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 500670)

  • 21. Recombinant human type II collagens with low and high levels of hydroxylysine and its glycosylated forms show marked differences in fibrillogenesis in vitro.
    Notbohm H; Nokelainen M; Myllyharju J; Fietzek PP; Müller PK; Kivirikko KI
    J Biol Chem; 1999 Mar; 274(13):8988-92. PubMed ID: 10085145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of bovine tendon glycoprotein on the formation of fibrils from collagen solutions.
    Anderson JC; Labedz RI; Kewley MA
    Biochem J; 1977 Nov; 167(2):345-51. PubMed ID: 202251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction.
    Graham HK; Holmes DF; Watson RB; Kadler KE
    J Mol Biol; 2000 Jan; 295(4):891-902. PubMed ID: 10656798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrastructural response of tendon to excessive level or duration of tensile load supports that collagen fibrils are mechanically continuous.
    Hijazi KM; Singfield KL; Veres SP
    J Mech Behav Biomed Mater; 2019 Sep; 97():30-40. PubMed ID: 31085458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Possible involvement of aminotelopeptide in self-assembly and thermal stability of collagen I as revealed by its removal with proteases.
    Sato K; Ebihara T; Adachi E; Kawashima S; Hattori S; Irie S
    J Biol Chem; 2000 Aug; 275(33):25870-5. PubMed ID: 10851240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and assembly of the native collagen fibril.
    Piez KA
    Connect Tissue Res; 1982; 10(1):25-36. PubMed ID: 6216065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of deamination and/or blocking arginine residues on the molecular assembly of acid-extracted rat tail tendon collagen.
    Hu XW; Knight DP; Grant RA
    Tissue Cell; 1996 Apr; 28(2):215-22. PubMed ID: 8650674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tendon response to tensile stress: an ultrastructural investigation of collagen:proteoglycan interactions in stressed tendon.
    Cribb AM; Scott JE
    J Anat; 1995 Oct; 187 ( Pt 2)(Pt 2):423-8. PubMed ID: 7592005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Formation of collagen type I fibrils in vitro].
    Nikolaeva TI; Pisachenko AI; Polozov RV; Rochev IuA; Gavriliuk BK
    Biofizika; 2001; 46(4):612-8. PubMed ID: 11558370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron-microscopic study of the collagen fibrils of the rat tail tendon as revealed by freeze-fracture and freeze-etching techniques.
    Gotoh T; Sugi Y
    Cell Tissue Res; 1985; 240(3):529-34. PubMed ID: 2410127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of type I collagen fibril assembly by link protein and proteoglycans.
    Chandrasekhar S; Kleinman HK; Hassell JR; Martin GR; Termine JD; Trelstad RL
    Coll Relat Res; 1984 Oct; 4(5):323-37. PubMed ID: 6509889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of heterotypic fibril formation by collagen V is determined by chain stoichiometry.
    Chanut-Delalande H; Fichard A; Bernocco S; Garrone R; Hulmes DJ; Ruggiero F
    J Biol Chem; 2001 Jun; 276(26):24352-9. PubMed ID: 11423559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FTIRS in H2O demonstrates that collagen monomers undergo a conformational transition prior to thermal self-assembly in vitro.
    George A; Veis A
    Biochemistry; 1991 Mar; 30(9):2372-7. PubMed ID: 2001367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collagen fibril diameter distribution does not reflect changes in the mechanical properties of in vitro stress-deprived tendons.
    Lavagnino M; Arnoczky SP; Frank K; Tian T
    J Biomech; 2005 Jan; 38(1):69-75. PubMed ID: 15519341
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aggregation and self assembly of non-enzymatic glycation of collagen in the presence of amino guanidine and aspirin: an in vitro study.
    Usha R; Jaimohan SM; Rajaram A; Mandal AB
    Int J Biol Macromol; 2010 Oct; 47(3):402-9. PubMed ID: 20600266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The formation and thermal stability of in vitro assembled fibrils from acid-soluble and pepsin-treated collagens.
    Snowden JM; Swann DA
    Biochim Biophys Acta; 1979 Oct; 580(2):372-81. PubMed ID: 42446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron microscope 3D reconstruction of branched collagen fibrils in vivo.
    Starborg T; Lu Y; Huffman A; Holmes DF; Kadler KE
    Scand J Med Sci Sports; 2009 Aug; 19(4):547-52. PubMed ID: 19422644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oblique banding pattern in collagen fibrils reconstituted in vitro after trypsin treatment.
    Ghosh SK; Mitra HP
    Biochim Biophys Acta; 1975 Oct; 405(2):340-6. PubMed ID: 1180959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.