These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Hybrid concept on the mechanical test method of small caliber blood vessel. Yokobori AT; Ohkuma T; Yoshinari H; Ichiki M; Ohuchi H; Yokobori T Biomed Mater Eng; 1993; 3(4):175-83. PubMed ID: 8205059 [TBL] [Abstract][Full Text] [Related]
4. Influence of longitudinal tethering on the tension in thick-walled blood vessels in equilibrium. Chu BM; Oka S Biorheology; 1973 Dec; 10(4):517-25. PubMed ID: 4783682 [No Abstract] [Full Text] [Related]
5. Effects of pulsatile flow pattern and each stage of pressure increasing, constant and decreasing, respectively upon inelastic deformation of blood vessel. Yokobori AT; Ohkuma T; Maeyama T; Ohuchi H; Yokobori T Biomed Mater Eng; 1991; 1(4):223-41. PubMed ID: 1843121 [TBL] [Abstract][Full Text] [Related]
7. High frequency pressure propagation in viscoelastic tubes: a new experimental approach. Ursino M; Artioli E Biomed Mater Eng; 1992; 2(1):19-31. PubMed ID: 1458201 [TBL] [Abstract][Full Text] [Related]
8. The effects of flow and fluid mechanical stress on red cells and platelets. Goldsmith HL Trans Am Soc Artif Intern Organs; 1974; 20A():21-6. PubMed ID: 4450339 [No Abstract] [Full Text] [Related]
9. Biophysical analyses of blood vessel walls and blood flow. Roach MR Annu Rev Physiol; 1977; 39():51-71. PubMed ID: 139845 [No Abstract] [Full Text] [Related]
10. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Kabinejadian F; Ghista DN Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834 [TBL] [Abstract][Full Text] [Related]
15. Inelastic constitutive modeling for blood vessels based on viscoplasticity. Tanaka E; Yamada H Front Med Biol Eng; 1990; 2(3):177-80. PubMed ID: 2288885 [TBL] [Abstract][Full Text] [Related]
16. Memory functions as a tool for the description of tissue deformability. Mahrenholtz OH; Zimmerman RU Biorheology; 1984; 21(5):663-74. PubMed ID: 6518282 [TBL] [Abstract][Full Text] [Related]
17. Nonlinear stress field in blood vessels under the action of connective tissues. Misra JC; Roychoudhury K Blood Vessels; 1982; 19(1):19-29. PubMed ID: 7059684 [No Abstract] [Full Text] [Related]
18. Ultrasonic measurement of forced diameter variations in an elastic tube. Berrios JC; Pedersen PC Ultrason Imaging; 1994 Apr; 16(2):124-42. PubMed ID: 7974908 [TBL] [Abstract][Full Text] [Related]
19. Implementation of an optical method for the real-time determination of uniaxial strain and vessel mechanics. Elhadj S; Chan R; Forsten-Williams K IEEE Trans Biomed Eng; 2004 Mar; 51(3):536-8. PubMed ID: 15000384 [TBL] [Abstract][Full Text] [Related]
20. [In vitro determination of the pressure-diameter relationship and velocity profiles by ultrasonic technics. In vivo application]. Rieu R; Friggi A; Farahifar D; Cassot F J Physiol (Paris); 1987; 82(3):175-82. PubMed ID: 3332291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]