These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The significance of the renal pelvis and intrarenal veins in renal lymph formation. Bell RD; Ornitz RD; Trautman R; Andersen IL; Keyl MJ Invest Urol; 1971 Sep; 9(2):149-53. PubMed ID: 5120371 [No Abstract] [Full Text] [Related]
3. Intrarenal distribution of vascular resistance in the dog. Bálint P; Fekete A; Molnár L; Szöcs E Acta Physiol Acad Sci Hung; 1971; 40(1):53-65. PubMed ID: 5134167 [No Abstract] [Full Text] [Related]
4. Intrarenal distribution of blood flow and renin release during renal venous pressure elevation. Kishimoto T; Maekawa M; Abe Y; Yamamoto K Kidney Int; 1973 Oct; 4(4):259-66. PubMed ID: 4752169 [No Abstract] [Full Text] [Related]
5. Intrarenal distribution of blood flow during ureteral and venous pressure elevation. Abe Y; Kishimoto T; Yamamoto K; Ueda J Am J Physiol; 1973 Apr; 224(4):746-51. PubMed ID: 4698792 [No Abstract] [Full Text] [Related]
6. Intrarenal venous and cortical catheter pressures in the dog kidney. Willassen Y; Ofstad J Scand J Clin Lab Invest; 1979 Dec; 39(8):697-705. PubMed ID: 531492 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of effect of thoracic inferior vena cava constriction on renal water excretion. Anderson RJ; Cadnapaphornchai P; Harbottle JA; McDonald KM; Schrier RW J Clin Invest; 1974 Dec; 54(6):1473-9. PubMed ID: 4436443 [TBL] [Abstract][Full Text] [Related]
8. [Effect of clamping the renal artery and vein on the renal function in dogs]. Pytasz M; Zuliński T; Tyburczyk M; Wiśliński M Acta Physiol Pol; 1970; 21(5):639-56. PubMed ID: 5484006 [No Abstract] [Full Text] [Related]
9. Effects of renal nerves on renal hemodynamics. I. Direct stimulation and carotid occlusion. Katz MA; Shear L Nephron; 1975; 14(3-4):246-56. PubMed ID: 124020 [TBL] [Abstract][Full Text] [Related]
10. Intrarenal regulatory factors of salt excretion during renal venous pressure elevation. Wathen RL; Selkurt EE Am J Physiol; 1969 Jun; 216(6):1517-24. PubMed ID: 5786741 [No Abstract] [Full Text] [Related]
11. Albumin uptake by renal lymphatics with and without obstruction of the renal vein. Threefoot SA; Pearson JE; Georgiardis A Am J Cardiol; 1989 Aug; 64(6):51C-56C. PubMed ID: 2756899 [TBL] [Abstract][Full Text] [Related]
12. The flow rate and macromolecule content of hilar lymph from the rabbit's kidney under conditions of renal venous pressure elevation and restriction of renal function - studies on the origin of renal lymph. Vogel G; Gärtner K; Ulbrich M Lymphology; 1974 Sep; 7(3):136-43. PubMed ID: 4437201 [No Abstract] [Full Text] [Related]
13. The effects of chronic unilateral renal artery constriction on blood pressure, separate renal function, and the development of collateral circulation in the dog. Zweig SM; Rapoport A; Wilson DR; Ranking GN; Husdan H Can J Physiol Pharmacol; 1972 Dec; 50(12):1170-80. PubMed ID: 4654581 [No Abstract] [Full Text] [Related]
14. Experimental studies of effects of acute renal venous congestion on renal function --with particular reference to renal arterio-venous plasma sodium difference. Hirano T Jpn Circ J; 1976 Nov; 40(11):1331-43. PubMed ID: 1018335 [TBL] [Abstract][Full Text] [Related]
15. Renal autoregulation and renin release during changes in renal perfusion pressure. Schmid HE Am J Physiol; 1972 May; 222(5):1132-7. PubMed ID: 5022371 [No Abstract] [Full Text] [Related]
16. Influence of renal fluid dynamics on renal lymph pressure, flow and composition. Bell RD; Sinclair RJ; Parry WL Lymphology; 1974 Sep; 7(3):143-8. PubMed ID: 4437202 [No Abstract] [Full Text] [Related]
17. Redistribution of cortical blood flow during renal vasodilatation in dogs. McNay JL; Abe Y Circ Res; 1970 Dec; 27(6):1023-32. PubMed ID: 5487069 [No Abstract] [Full Text] [Related]