These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 500830)

  • 21. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes.
    Johnston RB; Keele BB; Misra HP; Lehmeyer JE; Webb LS; Baehner RL; RaJagopalan KV
    J Clin Invest; 1975 Jun; 55(6):1357-72. PubMed ID: 166094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for participation of hydroxyl radical in increased microvascular permeability.
    Björk J; del Maestro RF; Arfors KE
    Agents Actions Suppl; 1980; 7():208-13. PubMed ID: 6166180
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the role of hydroxyl radical and the effect of tetrandrine on nuclear factor--kappaB activation by phorbol 12-myristate 13-acetate.
    Ye J; Ding M; Zhang X; Rojanasakul Y; Shi X
    Ann Clin Lab Sci; 2000 Jan; 30(1):65-71. PubMed ID: 10678585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydroxyl radical formation in phagocytic cells of the rat.
    Drath DB; Karnovsky ML; Huber GL
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Jan; 46(1):136-40. PubMed ID: 222719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scatchard analysis of methane sulfinic acid production from dimethyl sulfoxide: a method to quantify hydroxyl radical formation in physiologic systems.
    Babbs CF; Griffin DW
    Free Radic Biol Med; 1989; 6(5):493-503. PubMed ID: 2744582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxygen radical scavengers selectively inhibit interleukin 8 production in human whole blood.
    DeForge LE; Fantone JC; Kenney JS; Remick DG
    J Clin Invest; 1992 Nov; 90(5):2123-9. PubMed ID: 1331181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of hydroxyl radical by human alveolar macrophages.
    Hoidal JR; Beall GD; Repine JE
    Infect Immun; 1979 Dec; 26(3):1088-92. PubMed ID: 528049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydroxyl radical scavengers produce similar decreases in the chemiluminescence responses and bactericidal activities of neutrophils.
    Repine JE; Johansen KS; Berger EM
    Infect Immun; 1984 Jan; 43(1):435-7. PubMed ID: 6317572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iron sequestration by macrophages decreases the potential for extracellular hydroxyl radical formation.
    Olakanmi O; McGowan SE; Hayek MB; Britigan BE
    J Clin Invest; 1993 Mar; 91(3):889-99. PubMed ID: 8383703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced formation of ethane and n-pentane by rat hepatocytes in the presence of dimethyl sulfoxide.
    Santone KS; Kroschel DM; Powis G
    Biochem Pharmacol; 1986 Apr; 35(8):1287-92. PubMed ID: 3008757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissociation of the inhibitory effect of dapsone on the generation of oxygen intermediates--in comparison with that of colchicine and various scavengers.
    Niwa Y; Sakane T; Miyachi Y
    Biochem Pharmacol; 1984 Aug; 33(15):2355-60. PubMed ID: 6087824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new method for the detection of hydroxyl radical production by phagocytic cells.
    Sagone AL; Decker MA; Wells RM; Democko C
    Biochim Biophys Acta; 1980 Feb; 628(1):90-7. PubMed ID: 6892610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ischemia-induced vascular changes: role of xanthine oxidase and hydroxyl radicals.
    Parks DA; Granger DN
    Am J Physiol; 1983 Aug; 245(2):G285-9. PubMed ID: 6309018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of phagosome formation in hydroxyl radical generation by human polymorphonuclear leukocytes: studies with normal and cytochalasin B-treated cell.
    Kubo A; Sasada M; Yamamoto K; Nishiyama H; Nishimura T; Nakamura T; Uchino H
    Nihon Ketsueki Gakkai Zasshi; 1986 Feb; 49(1):34-42. PubMed ID: 3010624
    [No Abstract]   [Full Text] [Related]  

  • 35. Effects of free radical generation on mouse pial arterioles: probable role of hydroxyl radicals.
    Rosenblum WI
    Am J Physiol; 1983 Jul; 245(1):H139-42. PubMed ID: 6307066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo formation of hydroxyl radicals following intragastric administration of ferrous salt in rats.
    Kang JO; Slivka A; Slater G; Cohen G
    J Inorg Biochem; 1989 Jan; 35(1):55-69. PubMed ID: 2540265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of glutathione in protecting endothelial cells against hydrogen peroxide oxidant injury.
    Andreoli SP; Mallett CP; Bergstein JM
    J Lab Clin Med; 1986 Sep; 108(3):190-8. PubMed ID: 3091744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anti-oxidant effects of retinoids on inflammatory skin diseases.
    Yoshioka A; Miyachi Y; Imamura S; Niwa Y
    Arch Dermatol Res; 1986; 278(3):177-83. PubMed ID: 3015048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitivity of Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus to oxidative killing.
    Dongari AI; Miyasaki KT
    Oral Microbiol Immunol; 1991 Dec; 6(6):363-72. PubMed ID: 1668250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidation of DMSO and methanesulfinic acid by the hydroxyl radical.
    Scaduto RC
    Free Radic Biol Med; 1995 Feb; 18(2):271-7. PubMed ID: 7744311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.