These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 5008600)

  • 1. Attentiveness to sensory stimuli: central control in locusts.
    Camhi JM; Hinkle M
    Science; 1972 Feb; 175(4021):550-2. PubMed ID: 5008600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locust motoneurons: bursting activity correlated with axon diameter.
    Hinkle M; Camhi JM
    Science; 1972 Feb; 175(4021):553-6. PubMed ID: 5008601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response modification by the central flight oscillator of locusts.
    Camhi JM; Hihkle M
    J Exp Biol; 1974 Apr; 60(2):477-92. PubMed ID: 4832993
    [No Abstract]   [Full Text] [Related]  

  • 4. Multiple feedback loops in the flying cockroach: excitation of the dorsal and inhibition of the ventral giant interneurons.
    Libersat F; Levy A; Camhi JM
    J Comp Physiol A; 1989 Sep; 165(5):651-68. PubMed ID: 2795498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates to flight-related density-dependent phase characteristics in locusts.
    Fuchs E; Kutsch W; Ayali A
    J Neurobiol; 2003 Nov; 57(2):152-62. PubMed ID: 14556281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-ordinating interneurones of the locust which convey two patterns of motor commands: their connexions with flight motoneurones.
    Burrows M
    J Exp Biol; 1975 Dec; 63(3):713-33. PubMed ID: 1214126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gliding behaviour elicited by lateral looming stimuli in flying locusts.
    Santer RD; Simmons PJ; Rind FC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):61-73. PubMed ID: 15558287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust.
    Reichert H; Rowell CH
    J Neurophysiol; 1985 May; 53(5):1201-18. PubMed ID: 2987432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular recordings from interneurons and motoneurons in intact flying locusts.
    Wolf H; Pearson KG
    J Neurosci Methods; 1987 Oct; 21(2-4):345-54. PubMed ID: 3682883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration of bursting properties in interneurons during locust flight.
    Ramirez JM; Pearson KG
    J Neurophysiol; 1993 Nov; 70(5):2148-60. PubMed ID: 8294976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells.
    Arbas EA
    J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of an identified looming-sensitive neuron in triggering a flying locust's escape.
    Santer RD; Rind FC; Stafford R; Simmons PJ
    J Neurophysiol; 2006 Jun; 95(6):3391-400. PubMed ID: 16452263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects.
    McMillan GA; Loessin V; Gray JR
    J Exp Biol; 2013 Sep; 216(Pt 17):3369-80. PubMed ID: 23737560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interneurons in the flight system of the locust: distribution, connections, and resetting properties.
    Robertson RM; Pearson KG
    J Comp Neurol; 1983 Mar; 215(1):33-50. PubMed ID: 6853764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escapes with and without preparation: the neuroethology of visual startle in locusts.
    Simmons PJ; Rind FC; Santer RD
    J Insect Physiol; 2010 Aug; 56(8):876-83. PubMed ID: 20433843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of hindlimb posture by wind-sensitive hairs and antennae during locust flight.
    Arbas EA
    J Comp Physiol A; 1986 Dec; 159(6):849-57. PubMed ID: 3806441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural mechanisms underlying behavior in the locust Schistocerca gregaria. II. Integrative activity in metathoracic neurons.
    Hoyle G; Burrows M
    J Neurobiol; 1973; 4(1):43-67. PubMed ID: 4703781
    [No Abstract]   [Full Text] [Related]  

  • 18. Central generation of grooming motor patterns and interlimb coordination in locusts.
    Berkowitz A; Laurent G
    J Neurosci; 1996 Dec; 16(24):8079-91. PubMed ID: 8987833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system.
    Elson RC; Sillar KT; Bush BM
    J Neurophysiol; 1992 Mar; 67(3):530-46. PubMed ID: 1578243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system.
    Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA
    Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.