These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 5010989)

  • 1. Kinetic parameters of glucose efflux from human red blood cells under zero-trans conditions.
    Karlish SJ; Lieb WR; Ram D; Stein WD
    Biochim Biophys Acta; 1972 Jan; 255(1):126-32. PubMed ID: 5010989
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetics of glucose transport in human erythrocytes: zero-trans efflux and infinite-trans efflux at 0 degree C.
    Wheeler TJ
    Biochim Biophys Acta; 1986 Nov; 862(2):387-98. PubMed ID: 3778899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The kinetics of glucose transport in human red blood cells.
    Lowe AG; Walmsley AR
    Biochim Biophys Acta; 1986 May; 857(2):146-54. PubMed ID: 3707948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carrier and non-carrier models for sugar transport in the human red blood cell.
    Lieb WR; Stein WD
    Biochim Biophys Acta; 1972 Apr; 265(2):187-207. PubMed ID: 4555470
    [No Abstract]   [Full Text] [Related]  

  • 5. Glucose transport in human erythrocytes measured using 13C NMR spin transfer.
    Kuchel PW; Chapman BE; Potts JR
    FEBS Lett; 1987 Jul; 219(1):5-10. PubMed ID: 3595881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinetic analysis of L-tryptophan transport in human red blood cells.
    Rosenberg R
    Biochim Biophys Acta; 1981 Dec; 649(2):262-8. PubMed ID: 7317397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell.
    Eilam Y; Stein WD
    Biochim Biophys Acta; 1972 Apr; 266(1):161-73. PubMed ID: 5041086
    [No Abstract]   [Full Text] [Related]  

  • 8. Glucose transport kinetics in human red blood cells.
    Gasbjerg PK; Brahm J
    Biochim Biophys Acta; 1991 Feb; 1062(1):83-93. PubMed ID: 1998714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of nucleoside transport in human erythrocytes. Alterations during blood preservation.
    Plagemann PG; Wohlhueter RM
    Biochim Biophys Acta; 1984 Nov; 778(1):176-84. PubMed ID: 6498185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quenched-flow technique for the measurement of glucose influx into human red blood cells.
    Lowe AG; Walmsley AR
    Anal Biochem; 1985 Feb; 144(2):385-9. PubMed ID: 3993905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the kinetics and thermodynamics of the carrier systems for glucose and leucine in human red blood cells.
    Walmsley AR; Lowe AG
    Biochim Biophys Acta; 1987 Jul; 901(2):229-38. PubMed ID: 3607048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural requirements for binding to the sugar-transport system of the human erythrocyte.
    Barnett JE; Holman GD; Munday KA
    Biochem J; 1973 Feb; 131(2):211-21. PubMed ID: 4722437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-Leucine transport in human red blood cells: a detailed kinetic analysis.
    Rosenberg R
    J Membr Biol; 1981; 62(1-2):79-93. PubMed ID: 7277478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of the glucose carrier in erythrocytes with halodinitrobenzenes.
    Krupka RM; Devés R
    J Biol Chem; 1980 Mar; 255(5):2051-5. PubMed ID: 7354076
    [No Abstract]   [Full Text] [Related]  

  • 15. An alternative to the carrier model for sugar transport across red cell membranes.
    Naftalin RJ
    Biomembranes; 1972; 3():117-26. PubMed ID: 4666509
    [No Abstract]   [Full Text] [Related]  

  • 16. The temperature dependence of the exchange transport of glucose in human erythrocytes.
    Lacko L; Wittke B; Geck P
    J Cell Physiol; 1973 Oct; 82(2):213-8. PubMed ID: 4753421
    [No Abstract]   [Full Text] [Related]  

  • 17. Theoretical considerations and models of red and white cell pentose cycles.
    Hodges JM; Grümer HD
    Clin Chem; 1973 Mar; 19(3):330-7. PubMed ID: 4689104
    [No Abstract]   [Full Text] [Related]  

  • 18. Transport of monosaccharides. I. Asymmetry in the human erythrocyte mechanism.
    Batt ER; Schachter D
    J Clin Invest; 1973 Jul; 52(7):1686-97. PubMed ID: 4718961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the simple carrier using irreversible inhibitors.
    Lieb WR; Stein WD
    Biochim Biophys Acta; 1976 Dec; 455(3):913-27. PubMed ID: 999944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose transport carrier activities in extensively washed human red cell ghosts.
    Jung CY; Carlson LM; Whaley DA
    Biochim Biophys Acta; 1971 Aug; 241(2):613-27. PubMed ID: 5159799
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.