These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 50137)
21. Serotonin-like immunoreactivity in the optic lobes of three insect species. Nässel DR; Klemm N Cell Tissue Res; 1983; 232(1):129-40. PubMed ID: 6349816 [TBL] [Abstract][Full Text] [Related]
22. Relationship between photoreceptor terminations and centrifugal neurons in the optic lobe of octopus. Saidel WM Cell Tissue Res; 1979; 204(3):463-72. PubMed ID: 93516 [TBL] [Abstract][Full Text] [Related]
23. The intensification of cobalt-filled neurone profiles using a modification of Timm's sulphide-silver method. Tyrer NM; Bell EM Brain Res; 1974 Jun; 73(1):151-5. PubMed ID: 4135158 [No Abstract] [Full Text] [Related]
24. Morphology of visual projection neurons supplying premotor area in the brain of the silkmoth Bombyx mori. Namiki S; Kanzaki R Cell Tissue Res; 2018 Dec; 374(3):497-515. PubMed ID: 30078100 [TBL] [Abstract][Full Text] [Related]
25. Characterization of PDF-immunoreactive neurons in the optic lobe and cerebral lobe of the cricket, Gryllus bimaculatus. Abdelsalam S; Uemura H; Umezaki Y; Saifullah AS; Shimohigashi M; Tomioka K J Insect Physiol; 2008 Jul; 54(7):1205-12. PubMed ID: 18634795 [TBL] [Abstract][Full Text] [Related]
26. Visualization of the retino-hypothalamic projection in the rat by cobalt precipitation. Mason CA; Lincoln DW Cell Tissue Res; 1976 Apr; 168(1):117-31. PubMed ID: 57830 [TBL] [Abstract][Full Text] [Related]
27. Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. Sinakevitch I; Douglass JK; Scholtz G; Loesel R; Strausfeld NJ J Comp Neurol; 2003 Dec; 467(2):150-72. PubMed ID: 14595766 [TBL] [Abstract][Full Text] [Related]
28. Central projections of first-order ocellar interneurons in two orthopteroid insects Acheta domesticus and Periplaneta americana. A comparative study. Koontz MA; Edwards JS Cell Tissue Res; 1984; 236(1):133-46. PubMed ID: 6713501 [TBL] [Abstract][Full Text] [Related]
29. Neuroanatomy of the visual afferents in the horseshoe crab (Limulus polyphemus). Chamberlain SC; Barlow RB J Comp Neurol; 1980 Jul; 192(2):387-400. PubMed ID: 7400403 [TBL] [Abstract][Full Text] [Related]
30. Postembryonic changes in circadian photo-responsiveness rhythms of optic lobe interneurons in the cricket Gryllus bimaculatus. Uemura H; Tomioka K J Biol Rhythms; 2006 Aug; 21(4):279-89. PubMed ID: 16864648 [TBL] [Abstract][Full Text] [Related]
31. Metamorphic changes in the brain of Chironomus dolichotomus (Diptera:Chironomidae). Singh YN; Singh M J Hirnforsch; 1980; 21(6):561-8. PubMed ID: 7229341 [TBL] [Abstract][Full Text] [Related]
32. Surgical and intensification procedures for defining visual pathways with cobaltous-lysine. Springer AD; Prokosch JH J Histochem Cytochem; 1982 Dec; 30(12):1235-42. PubMed ID: 6818275 [TBL] [Abstract][Full Text] [Related]
33. Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits. Douglass JK; Strausfeld NJ J Comp Neurol; 2003 Mar; 457(4):326-44. PubMed ID: 12561074 [TBL] [Abstract][Full Text] [Related]
34. The synaptic organization of visual interneurons in the lobula complex of flies. A light and electron microscopical study using silver-intensified cobalt-impregnations. Hausen K; Wolburg-Buchholz W; Ribi WA Cell Tissue Res; 1980; 208(3):371-87. PubMed ID: 6156764 [TBL] [Abstract][Full Text] [Related]
35. Optic lobe commissures in a three-dimensional brain model of the cockroach Leucophaea maderae: a search for the circadian coupling pathways. Reischig T; Stengl M J Comp Neurol; 2002 Feb; 443(4):388-400. PubMed ID: 11807846 [TBL] [Abstract][Full Text] [Related]
36. Two visual systems in one eyestalk: The unusual optic lobe metamorphosis in the stomatopod Alima pacifica. Lin C; Cronin TW Dev Neurobiol; 2018 Jan; 78(1):3-14. PubMed ID: 29082670 [TBL] [Abstract][Full Text] [Related]
37. Structural isoforms of the circadian neuropeptide PDF expressed in the optic lobes of the cricket Gryllus bimaculatus: immunocytochemical evidence from specific monoclonal antibodies. Honda T; Matsushima A; Sumida K; Chuman Y; Sakaguchi K; Onoue H; Meinertzhagen IA; Shimohigashi Y; Shimohigashi M J Comp Neurol; 2006 Nov; 499(3):404-21. PubMed ID: 16998911 [TBL] [Abstract][Full Text] [Related]
38. The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Bausenwein B; Dittrich AP; Fischbach KF Cell Tissue Res; 1992 Jan; 267(1):17-28. PubMed ID: 1735111 [TBL] [Abstract][Full Text] [Related]
39. The second and third optic ganglia of the worker bee: Golgi studies of the neuronal elements in the medulla and lobula. Ribi WA; Scheel M Cell Tissue Res; 1981; 221(1):17-43. PubMed ID: 7032703 [TBL] [Abstract][Full Text] [Related]
40. Histamine-like immunoreactivity in the visual system and brain of an orthopteran and a hymenopteran insect. Bornhauser BC; Meyer EP Cell Tissue Res; 1997 Jan; 287(1):211-21. PubMed ID: 9011397 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]