These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 5014880)
1. An ionization chamber for the measurement of thermally stimulated exoelectrons. LaRiviere PD; Tochlin E Health Phys; 1972 Feb; 22(2):198-201. PubMed ID: 5014880 [No Abstract] [Full Text] [Related]
2. Thermally stimulated exoelectron emission, thermoluminescence, and impurities in LiF and BeO. Becker K; Cheka JS; Oberhofer M Health Phys; 1970 Sep; 19(3):391-403. PubMed ID: 5512922 [No Abstract] [Full Text] [Related]
4. Ruby as a thermoluminescent radiation dosimeter. Philbrick CR; Buckman WG; Underwood N Health Phys; 1967 Jul; 13(7):798-801. PubMed ID: 6026825 [No Abstract] [Full Text] [Related]
5. Sensitization in LiF:teflon dosemeters. Linsley GS; Mason EW Phys Med Biol; 1971 Oct; 16(4):695-8. PubMed ID: 5153706 [No Abstract] [Full Text] [Related]
6. Dose-rate dependence of lithium fluoride for exposures above 15,000 R per pulse. Goldstein N Health Phys; 1972 Jan; 22(1):90-1. PubMed ID: 5012300 [No Abstract] [Full Text] [Related]
8. Thermal annealing effects on the thermoluminescence of lithium fluoride teflon disc dosimeters. Webb GA Health Phys; 1967 Jul; 13(7):814-6. PubMed ID: 6026831 [No Abstract] [Full Text] [Related]
9. Measurement of skin dose from low energy beta and gamma radiation using thermoluminescent discs. Marshall M; Docherty J Phys Med Biol; 1971 Jul; 16(3):503-10. PubMed ID: 5559699 [No Abstract] [Full Text] [Related]
10. Effect of quenching temperature and rate on thermoluminescence in high purity lithium fluoride. Guilmet GM; Stoebe TG; Dawson HI Health Phys; 1970 Oct; 19(4):582-4. PubMed ID: 5513673 [No Abstract] [Full Text] [Related]
11. Thermoluminescent dosimetry of aluminum oxide. McDougall RS; Rudin S Health Phys; 1970 Aug; 19(2):281-3. PubMed ID: 5513482 [No Abstract] [Full Text] [Related]
12. Studies of gamma dosimetry systems used for nuclear accident dosimetry. Duffy TL; Kasper RB Health Phys; 1968 Jan; 14(1):45-9. PubMed ID: 5635622 [No Abstract] [Full Text] [Related]
13. Thermoluminescent dosimeters for environmental monitoring. Hall RM; La Rocca JP Health Phys; 1966 Jun; 12(6):851-2. PubMed ID: 5963491 [No Abstract] [Full Text] [Related]
14. Measurements of depth-dose distributions in cylindrical phantoms exposed to 28-MeV, 21-MeV, 14-MeV, or 5-MeV Protons. Hardy KA; Mitchell JC; Allen SJ Radiat Res; 1969 Feb; 37(2):272-82. PubMed ID: 5765540 [No Abstract] [Full Text] [Related]
15. Measurement of radiation dose distribution in a pond habitat by lithium fluoride dosimetry. Guthrie JE; Scott AG Can J Zool; 1969 Jan; 47(1):17-20. PubMed ID: 5406767 [No Abstract] [Full Text] [Related]
16. Thermally stimulated exoelectron emission (TSEE) as a method for dose measurements using lithium fluoride. Becker K Health Phys; 1969 Apr; 16(4):527-32. PubMed ID: 5787377 [No Abstract] [Full Text] [Related]
17. Thermoluminescent response of lithium fluoride to radiations with different LET. Suntharalingam N; Cameron JR Phys Med Biol; 1969 Jul; 14(3):397-410. PubMed ID: 5789345 [No Abstract] [Full Text] [Related]
18. Energy response of lithium borate thermoluminescent dosimeters. Thompson JJ; Ziemer PL Health Phys; 1972 Apr; 22(4):399-401. PubMed ID: 5045204 [No Abstract] [Full Text] [Related]
19. A thermoluminescent personnel neutron dosimeter. Korba A; Hoy JE Health Phys; 1970 May; 18(5):581-4. PubMed ID: 5513092 [No Abstract] [Full Text] [Related]
20. Thermoluminescence: a better way to monitor radiation exposure. Pearce CE Radiol Technol; 1971 Jan; 42(4):259-65. PubMed ID: 5581898 [No Abstract] [Full Text] [Related] [Next] [New Search]