These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 5016754)

  • 21. Kinetics of peat soil dissolved organic carbon release from bed sediment to water. Part 1. Laboratory simulation.
    Aguilar L; Thibodeaux LJ
    Chemosphere; 2005 Mar; 58(10):1309-18. PubMed ID: 15686748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploratory study of suspended sediment concentrations downstream of harvested peat bogs.
    Pavey B; Saint-Hilaire A; Courtenay S; Ouarda T; Bobée B
    Environ Monit Assess; 2007 Dec; 135(1-3):369-82. PubMed ID: 17505907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Occurrence of bound muramic acid and alpha, epsilon-diaminopimelic acid in soil and comparison of their contents with bacterial biomass.
    Durska G; Kaszubiak H
    Acta Microbiol Pol; 1983; 32(3):257-63. PubMed ID: 6198877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variability in As, Ca, Cr, K, Mn, Sr, and Ti concentrations among humic acids isolated from peat using NaOH, Na4P2O7 and NaOH+Na4P2O7 solutions.
    Zaccone C; Soler-Rovira P; Plaza C; Cocozza C; Miano TM
    J Hazard Mater; 2009 Aug; 167(1-3):987-94. PubMed ID: 19237239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioremediation of oil-contaminated soil using Candida catenulata and food waste.
    Joo HS; Ndegwa PM; Shoda M; Phae CG
    Environ Pollut; 2008 Dec; 156(3):891-6. PubMed ID: 18620787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Soil resource availability impacts microbial response to organic carbon and inorganic nitrogen inputs.
    Zhang WJ; Zhu W; Hu S
    J Environ Sci (China); 2005; 17(5):705-10. PubMed ID: 16312988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of biobed composition, moisture, and temperature on the degradation of pesticides.
    del Pilar Castillo M; Torstensson L
    J Agric Food Chem; 2007 Jul; 55(14):5725-33. PubMed ID: 17571901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CO2 release as an index of biological activity of cultivated soils.
    Gołebiowska J; Pedziwilk Z
    Acta Microbiol Pol; 1984; 33(3-4):249-56. PubMed ID: 6083709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Investigations on the amino acid composition of peat. I. Qualitative analysis].
    Krzeczkowska I; Szczepaniak S
    Ann Univ Mariae Curie Sklodowska Med; 1966; 21():199-205. PubMed ID: 5998561
    [No Abstract]   [Full Text] [Related]  

  • 30. Towards a universally adaptable method for quantitative extraction of high-purity nucleic acids from soil.
    Persoh D; Theuerl S; Buscot F; Rambold G
    J Microbiol Methods; 2008 Sep; 75(1):19-24. PubMed ID: 18573554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Archaeal rRNA diversity and methane production in deep boreal peat.
    Putkinen A; Juottonen H; Juutinen S; Tuittila ES; Fritze H; Yrjälä K
    FEMS Microbiol Ecol; 2009 Oct; 70(1):87-98. PubMed ID: 19656192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The structure of the micromycete complexes of oligotrophic peat deposits in the southern taiga subzone of West Siberia].
    Golovchenko AV; Semenova TA; Poliakova AV; Inisheva LI
    Mikrobiologiia; 2002; 71(5):667-74. PubMed ID: 12449634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. XAFS studies of cobalt(II) binding by solid peat and soil-derived humic acids and plant-derived humic acid-like substances.
    Ghabbour EA; Scheinost AC; Davies G
    Chemosphere; 2007 Feb; 67(2):285-91. PubMed ID: 17140631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [New forms of microorganisms and their distribution in natural peat].
    Volarovich MP; Terent'ev AA
    Mikrobiologiia; 1970; 39(3):488-94. PubMed ID: 5490462
    [No Abstract]   [Full Text] [Related]  

  • 35. Cellulolytic and fermentative guilds in eutrophic soils of the Florida Everglades.
    Uz I; Ogram AV
    FEMS Microbiol Ecol; 2006 Sep; 57(3):396-408. PubMed ID: 16907754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Examination of soil contaminated by coal-liquids by size exclusion chromatography in 1-methyl-2-pyrrolidinone solution to evaluate interference from humic and fulvic acids and extracts from peat.
    Morgan TJ; Herod AA; Brain SA; Chambers FM; Kandiyoti R
    J Chromatogr A; 2005 Nov; 1095(1-2):81-8. PubMed ID: 16275286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Responses of aerobic microbial communities and soil respiration to water-level drawdown in a northern boreal fen.
    Jaatinen K; Laiho R; Vuorenmaa A; del Castillo U; Minkkinen K; Pennanen T; Penttilä T; Fritze H
    Environ Microbiol; 2008 Feb; 10(2):339-53. PubMed ID: 17903215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The effect of organic and mineral fertilizers on microbial and biochemical processes in soil].
    Pokorná-Kozová J; Apfelthaler R
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 125(3):250-62. PubMed ID: 5537306
    [No Abstract]   [Full Text] [Related]  

  • 39. The assay of -galactosidase in soil.
    Rysavý P; Macura J
    Folia Microbiol (Praha); 1972; 17(5):370-4. PubMed ID: 5078077
    [No Abstract]   [Full Text] [Related]  

  • 40. Critical evaluation of the use of the hydroxyapatite as a stabilizing agent to reduce the mobility of Zn and Ni in sewage sludge amended soils.
    Zupancic M; Bukovec P; Milacic R; Scancar J
    Waste Manag; 2006; 26(12):1392-9. PubMed ID: 16488592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.