These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 5018667)
1. Inhibition of ergosterol synthesis in Ustilago maydis by the fungicide triarimol. Ragsdale NN; Sisler HD Biochem Biophys Res Commun; 1972 Mar; 46(6):2048-53. PubMed ID: 5018667 [No Abstract] [Full Text] [Related]
2. Specific effects of triarimol on sterol biosynthesis in Ustilago maydis. Ragsdale NN Biochim Biophys Acta; 1975 Jan; 380(1):81-96. PubMed ID: 1122314 [TBL] [Abstract][Full Text] [Related]
3. A potent effect of 1,4-oxathiin systemic fungicides on succinate oxidation by a particulate preparation from Ustilago maydis. White GA Biochem Biophys Res Commun; 1971 Sep; 44(5):1212-9. PubMed ID: 5160406 [No Abstract] [Full Text] [Related]
4. Effects of miconazole and dodecylimidazole on sterol biosynthesis in Ustilago maydis. Henry MJ; Sisler HD Antimicrob Agents Chemother; 1979 Apr; 15(4):603-7. PubMed ID: 464593 [TBL] [Abstract][Full Text] [Related]
5. Mode of action of the azasteroid antibiotic 15-aza-24 methylene-d-homocholesta-8,14-dien-3 beta-ol in Ustilago maydis. Woloshuk CP; Sisler HD; Dutky SR Antimicrob Agents Chemother; 1979 Jul; 16(1):81-97. PubMed ID: 383015 [TBL] [Abstract][Full Text] [Related]
6. The fungicide dodine primarily inhibits mitochondrial respiration in Ustilago maydis, but also affects plasma membrane integrity and endocytosis, which is not found in Zymoseptoria tritici. Schuster M; Steinberg G Fungal Genet Biol; 2020 Sep; 142():103414. PubMed ID: 32474016 [TBL] [Abstract][Full Text] [Related]
7. Some biochemical changes in young barley plants, due to the Vitavax disinfection of seeds against Ustilago nuda (Jens.) Rostr. Krátká J Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1975; 130(2):165-70. PubMed ID: 1242263 [No Abstract] [Full Text] [Related]
8. The cAMP signal transduction pathway mediates resistance to dicarboximide and aromatic hydrocarbon fungicides in Ustilago maydis. Ramesh MA; Laidlaw RD; Dürrenberger F; Orth AB; Kronstad JW Fungal Genet Biol; 2001 Apr; 32(3):183-93. PubMed ID: 11343404 [TBL] [Abstract][Full Text] [Related]
9. Effect of some sterol-biosynthesis-inhibiting fungicides on the biosynthesis of polyisoprenoid compounds in barley seedings. Mercer EI; Khalil IA; Wang ZX Steroids; 1989; 53(3-5):393-412. PubMed ID: 2799851 [TBL] [Abstract][Full Text] [Related]
10. Effects of the oxathins DCMO and DCMOD on growth, proteins, oxidizing enzymes, and HCN production of low-temperature basidiomycete. Sekhon AS; Colotelo N Acta Biol Acad Sci Hung; 1973; 24(1):73-81. PubMed ID: 4205014 [No Abstract] [Full Text] [Related]
11. A reassessment of the risk of rust fungi developing resistance to fungicides. Oliver RP Pest Manag Sci; 2014 Nov; 70(11):1641-5. PubMed ID: 24616024 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and biological activity of analogs of the antifungal antibiotic UK-2A. I. Impact of picolinamide ring replacement. Owen WJ; Meyer KG; Slanec TJ; Wang NX; Meyer ST; Niyaz NM; Rogers RB; Bravo-Altamirano K; Herrick JL; Yao C Pest Manag Sci; 2019 Feb; 75(2):413-426. PubMed ID: 29952118 [TBL] [Abstract][Full Text] [Related]
13. Effect of triarimol on cholesterol biosynthesis in rat-liver subcellular. Mitropoulos KA; Gibbons GF Biochem Biophys Res Commun; 1976 Aug; 71(3):892-900. PubMed ID: 962959 [No Abstract] [Full Text] [Related]
15. Effect of the systemic fungicide benodanil on the growth and development of six spring barley varieties in the presence or absence of brown rust infection in the glasshouse. Udeogalanya AC Beitr Trop Landwirtsch Veterinarmed; 1982; 20(4):467-74. PubMed ID: 7171370 [TBL] [Abstract][Full Text] [Related]
16. Meta-Analytic Modeling of the Decline in Performance of Fungicides for Managing Soybean Rust after a Decade of Use in Brazil. Dalla Lana F; Paul PA; Godoy CV; Utiamada CM; da Silva LHCP; Siqueri FV; Forcelini CA; Jaccoud-Filho DS; Miguel-Wruck DS; Borges EP; Juliatti FC; Campos HD; Nunes J; Carneiro LC; Canteri MG; Ito MF; Meyer MC; Martins MC; Balardin RS; Furlan SH; Carlin VJ; Del Ponte EM Plant Dis; 2018 Apr; 102(4):807-817. PubMed ID: 30673410 [TBL] [Abstract][Full Text] [Related]
17. Homology modeling and screening of new 14α-demethylase inhibitor (DMI) fungicides based on optimized expression of CYP51 from Ustilago maydis in Escherichia coli. Han R; Zhang J; Li S; Cao S; Geng H; Yuan Y; Xiao W; Liu S; Liu D J Agric Food Chem; 2010 Dec; 58(24):12810-6. PubMed ID: 21090752 [TBL] [Abstract][Full Text] [Related]
18. Seasonal dynamics and fungicide sensitivity of organisms causing brown patch of tall fescue in North Carolina. Koehler AM; Shew HD Mycologia; 2017; 109(4):667-675. PubMed ID: 29020516 [TBL] [Abstract][Full Text] [Related]
19. The action of the systemic fungicides tridemorph and fenpropimorph on sterol biosynthesis by the soil amoeba Acanthamoeba polyphaga. Raederstorff D; Rohmer M Eur J Biochem; 1987 Apr; 164(2):421-6. PubMed ID: 3569273 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of Spore Germination and Appressorium Formation of Rust Species by Plant and Fungal Metabolites. Barilli E; Cimmino A; Masi M; Evidente M; Rubiales D; Evidente A Nat Prod Commun; 2016 Sep; 11(9):1343-1347. PubMed ID: 30807039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]