These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 5019478)

  • 1. Membrane permeability. Generalization of the reflection coefficient method of describing volume and solute flows.
    Zelman A
    Biophys J; 1972 Apr; 12(4):414-9. PubMed ID: 5019478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dilute solution approximation and generalization of the reflection coefficient method of describing volume and solute flows.
    Mikulecky DC
    Biophys J; 1973 Sep; 13(9):994-9. PubMed ID: 4733703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General continuum analysis of transport through pores. I. Proof of Onsager's reciprocity postulate for uniform pore.
    Levitt DG
    Biophys J; 1975 Jun; 15(6):533-51. PubMed ID: 1148357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic model of osmosis through semipermeable and solute-permeable membranes.
    Kiil F
    Acta Physiol Scand; 2003 Feb; 177(2):107-17. PubMed ID: 12558549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic, diffusive and convective volume and solute flows of ionic solutions through a horizontally mounted polymeric membrane.
    Jasik-Slezak J; Grzegorczyn S; Slezak A
    Polim Med; 2007; 37(3):31-46. PubMed ID: 18251203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of osmotic flow in porous membranes.
    Anderson JL; Malone DM
    Biophys J; 1974 Dec; 14(12):957-82. PubMed ID: 4429773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solute concentration effect on osmotic reflection coefficient.
    Adamski RP; Anderson JL
    Biophys J; 1983 Oct; 44(1):79-90. PubMed ID: 6626681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-electrolyte permeability as a tool for studying membrane fluidity.
    Van Zoelen EJ; Henriques de Jesus C; de Jonge E; Mulder M; Blok MC; de Gier J
    Biochim Biophys Acta; 1978 Aug; 511(3):335-47. PubMed ID: 687616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Relation between effective and real solute permeability coefficients through polymeric membrane].
    Jasik-Slezak J; Slezak A
    Polim Med; 2010; 40(2):29-36. PubMed ID: 20649087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A physical interpretation of the phenomenological coefficients of membrane permeability.
    KEDEM O; KATCHALSKY A
    J Gen Physiol; 1961 Sep; 45(1):143-79. PubMed ID: 13752127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion and convection across heteroporous membranes: a simple macroscopic equation.
    Groome LJ; Kinasewitz GT; Diana JN
    Microvasc Res; 1983 Nov; 26(3):307-22. PubMed ID: 6656666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmotic flow equations for leaky porous membranes.
    Hill AE
    Proc R Soc Lond B Biol Sci; 1989 Aug; 237(1288):369-77. PubMed ID: 2571158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions].
    Slezak A; Grzegorczyn S
    Polim Med; 2007; 37(2):67-79. PubMed ID: 17957950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Modification of the Katchalsky's relation between effective and real solute permeability coefficients through polymeric membrane].
    Slezak A
    Polim Med; 2011; 41(3):63-9. PubMed ID: 22046829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of lymphatic protein flux data. V. Unique PS products and sigma dS at low lymph flows.
    Reed RK; Townsley MI; Korthuis RJ; Taylor AE
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H728-40. PubMed ID: 1887920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation the reflection coefficient of polymeric membrane in concentration polarization conditions.
    Batko K; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(1):11-9. PubMed ID: 23808191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 2. Evaluation of Lij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):103-9. PubMed ID: 24044290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 1. Evaluation of Rij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):93-102. PubMed ID: 24044289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of linear nonequilibrium thermodynamics in the study of renal physiology.
    Essig A; Caplan SR
    Am J Physiol; 1979 Mar; 236(3):F211-9. PubMed ID: 371416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water movement: does thermodynamic interpretation distort reality?
    Essig A; Caplan SR
    Am J Physiol; 1989 Mar; 256(3 Pt 1):C694-8. PubMed ID: 2923202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.