These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 5020218)

  • 41. Engineering stabilized ion channels: covalent dimers of alamethicin.
    You S; Peng S; Lien L; Breed J; Sansom MS; Woolley GA
    Biochemistry; 1996 May; 35(20):6225-32. PubMed ID: 8639562
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Charge-pulse relaxation studies with lipid bilayer membranes modified by alamethicin.
    Boheim G; Benz R
    Biochim Biophys Acta; 1978 Feb; 507(2):262-70. PubMed ID: 626734
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Current fluctuation analysis of alamethicin pores in black lipid membranes. Effect of lanthanum ions [proceedings].
    Gögelein H; De Smedt H; Van Driessche W; Borghgraef R
    Arch Int Physiol Biochim; 1977 Aug; 85(3):628-30. PubMed ID: 72546
    [No Abstract]   [Full Text] [Related]  

  • 44. Membrane permeabilization of a mammalian neuroendocrine cell type (PC12) by the channel-forming peptides zervamicin, alamethicin, and gramicidin.
    Weidema AF; Kropacheva TN; Raap J; Ypey DL
    Chem Biodivers; 2007 Jun; 4(6):1347-59. PubMed ID: 17589868
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inactivation of the alamethicin-induced conductance caused by quaternary ammonium ions and local anesthetics.
    Donovan JJ; Latorre R
    J Gen Physiol; 1979 Apr; 73(4):425-51. PubMed ID: 448326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The blockage of the electrical conductance in a pore-containing membrane by the n-alkanes.
    Hendry BM; Urban BW; Haydon DA
    Biochim Biophys Acta; 1978 Oct; 513(1):106-16. PubMed ID: 82449
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Asymmetric lipid bilayers. Reponse to multivalent ions.
    Montal M
    Biochim Biophys Acta; 1973 Mar; 298(3):750-4. PubMed ID: 4717001
    [No Abstract]   [Full Text] [Related]  

  • 48. Distribution of alamethicin in lipid membranes and water.
    Chelack WS; Petkau A
    J Lipid Res; 1973 Mar; 14(2):255-7. PubMed ID: 4698273
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Current-voltage characteristics and changes in membrane resistance in Millipore DOPH model membranes].
    Misawa K; Arisawa J; Hoshimiya N
    Iyodenshi To Seitai Kogaku; 1987 Jun; 25(2):107-13. PubMed ID: 3682284
    [No Abstract]   [Full Text] [Related]  

  • 50. Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis.
    Mak DO; Webb WW
    Biophys J; 1995 Dec; 69(6):2337-49. PubMed ID: 8599640
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Voltage-induced thickness changes of lipid bilayer membranes and the effect of an electrin field on gramicidin A channel formation.
    Bamberg E; Benz R
    Biochim Biophys Acta; 1976 Mar; 426(3):570-80. PubMed ID: 57801
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effective diameters of ion channels formed by homologs of the antibiotic chrysospermin.
    Ternovsky VI; Grigoriev PA; Berestovsky GN; Schlegel R; Dornberger K; Gräfe U
    Membr Cell Biol; 1997; 11(4):497-505. PubMed ID: 9553937
    [TBL] [Abstract][Full Text] [Related]  

  • 53. "Reversed" alamethicin conductance in lipid bilayers.
    Taylor RJ; de Levie R
    Biophys J; 1991 Apr; 59(4):873-9. PubMed ID: 1712238
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Effect of bilayer lipid membrane thickness, composition, and tension on gramicidin channel parameters].
    Rudnev VS; Ermishkin LN; Rovin IuG
    Biofizika; 1980; 25(5):857-8. PubMed ID: 6158349
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two classes of alamethicin transmembrane channels: molecular models from single-channel properties.
    Mak DO; Webb WW
    Biophys J; 1995 Dec; 69(6):2323-36. PubMed ID: 8599639
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Electrical excitability and ionic selectivity-properties common to many artificial membranes].
    Monnier AM
    Rev Roum Physiol; 1974; 11(2):111-51. PubMed ID: 4408022
    [No Abstract]   [Full Text] [Related]  

  • 57. The antibacterial peptide ceratotoxin A displays alamethicin-like behavior in lipid bilayers.
    Saint N; Marri L; Marchini D; Molle G
    Peptides; 2003 Nov; 24(11):1779-84. PubMed ID: 15019210
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phlorizin- and 6-ketocholestanol-mediated antagonistic modulation of alamethicin activity in phospholipid planar membranes.
    Luchian T; Mereuta L
    Langmuir; 2006 Sep; 22(20):8452-7. PubMed ID: 16981762
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Stabilization of flat bilayer lipid membranes by cholesterol].
    Bagaveev IA; Rovin IuG
    Biofizika; 1978; 23(3):545-7. PubMed ID: 667160
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural effects in the action of antibiotics on the ion permeability of lipid bilayers. I. Tyrocidine B.
    Goodall MC
    Biochim Biophys Acta; 1970 Mar; 203(1):28-33. PubMed ID: 4192276
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.