These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 5023580)

  • 1. Determination of pH in chloroplasts. I. Distribution of ( 14 C) methylamine.
    Rottenberg H; Grunwald T; Avron M
    Eur J Biochem; 1972 Jan; 25(1):54-63. PubMed ID: 5023580
    [No Abstract]   [Full Text] [Related]  

  • 2. Determination of pH in chloroplasts. 2. Fluorescent amines as a probe for the determination of pH in chloroplasts.
    Schuldiner S; Rottenberg H; Avron M
    Eur J Biochem; 1972 Jan; 25(1):64-70. PubMed ID: 5023581
    [No Abstract]   [Full Text] [Related]  

  • 3. Determination of pH in chloroplasts. 3. Ammonium uptake as a measure of pH in chloroplasts and sub-chloroplast particles.
    Rottenberg H; Grunwald T
    Eur J Biochem; 1972 Jan; 25(1):71-4. PubMed ID: 5023582
    [No Abstract]   [Full Text] [Related]  

  • 4. Correlation between calcium ion binding to chloroplast membranes and divalent cation-induced structural changes and changes in chlorophyll a fluorescence.
    Gross EL; Hess SC
    Biochim Biophys Acta; 1974 Mar; 339(3):334-46. PubMed ID: 4834673
    [No Abstract]   [Full Text] [Related]  

  • 5. II. Effect of ionophorous antibiotics in chlorplasts.
    Shavit N; Degani H; San Pietro A
    Biochim Biophys Acta; 1970 Aug; 216(1):208-19. PubMed ID: 5497185
    [No Abstract]   [Full Text] [Related]  

  • 6. Light-dependent anion transport in isolated spinach chloroplasts.
    Deamer DW; Packer L
    Biochim Biophys Acta; 1969 Apr; 172(3):539-45. PubMed ID: 5787638
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of adenine nucleotides and of photophosphorylation on H+ uptake and the magnitude of the H+ gradient in illuminated chloroplasts.
    Portis AR; McCarty RE
    J Biol Chem; 1974 Oct; 249(19):6250-4. PubMed ID: 4418653
    [No Abstract]   [Full Text] [Related]  

  • 8. Inhibition of energy-linked reactions in chloroplasts by polygalacturonate.
    Cohen WS; Jagendorf AT
    Arch Biochem Biophys; 1972 May; 150(1):235-43. PubMed ID: 4260397
    [No Abstract]   [Full Text] [Related]  

  • 9. Delta pH and membrane potential in bacterial chromatophores.
    Schuldiner S; Padan E; Rottenberg H; Gromet-Elhanan Z; Avron M
    FEBS Lett; 1974 Dec; 49(2):174-7. PubMed ID: 4216516
    [No Abstract]   [Full Text] [Related]  

  • 10. The inner membrane of the chloroplast envelope as the site of specific metabolite transport.
    Heldt HW; Sauer F
    Biochim Biophys Acta; 1971 Apr; 234(1):83-91. PubMed ID: 5560365
    [No Abstract]   [Full Text] [Related]  

  • 11. Photophosphorylation as a function of light intensity.
    Saha S; Izawa S; Good NE
    Biochim Biophys Acta; 1970 Nov; 223(1):158-64. PubMed ID: 5484049
    [No Abstract]   [Full Text] [Related]  

  • 12. On the pH-dependence of the light-induced hydrogen ion gradient in spinach chloroplasts.
    Portis AR; McCarty RE
    Arch Biochem Biophys; 1973 Jun; 156(2):621-5. PubMed ID: 4718786
    [No Abstract]   [Full Text] [Related]  

  • 13. Proton gradients as possible intermediary energy transducers during ATP-driven reverse electron flow in chloroplasts.
    Avron M; Schreiber U
    FEBS Lett; 1977 May; 77(1):1-6. PubMed ID: 15870
    [No Abstract]   [Full Text] [Related]  

  • 14. The interaction of N,N'-dicyclohexylcarbodiimide with the energy conservation systems of the spinach chloroplast.
    Uribe EG
    Biochemistry; 1972 Nov; 11(23):4228-35. PubMed ID: 4628027
    [No Abstract]   [Full Text] [Related]  

  • 15. On the functional proton current pathway of electron transport phosphorylation. An electrodic view.
    Kell DB
    Biochim Biophys Acta; 1979 Jul; 549(1):55-99. PubMed ID: 38839
    [No Abstract]   [Full Text] [Related]  

  • 16. The effects of tetraphenylboron on energy-linked reactions in spinach chloroplasts.
    Fiolet JW; Van Dam K
    Biochim Biophys Acta; 1973 Nov; 325(2):230-9. PubMed ID: 4271563
    [No Abstract]   [Full Text] [Related]  

  • 17. Evaluation of electron transport as the basis of adenosine triphosphate synthesis after acid-base transition by spinach chloroplasts.
    Miles CD; Jagendorf AT
    Biochemistry; 1970 Jan; 9(2):429-34. PubMed ID: 5412667
    [No Abstract]   [Full Text] [Related]  

  • 18. Evidence for chemiosmotic coupling of electron transport to ATP synthesis in spinach chloroplasts.
    Telfer A; Evans MC
    Biochim Biophys Acta; 1972 Mar; 256(3):625-37. PubMed ID: 5020234
    [No Abstract]   [Full Text] [Related]  

  • 19. Studies on the mechanisms of delayed and stimulated delayed fluorescence of chloroplasts.
    Kraan GP; Amesz J; Velthuys BR; Steemers RG
    Biochim Biophys Acta; 1970 Nov; 223(1):129-45. PubMed ID: 5494772
    [No Abstract]   [Full Text] [Related]  

  • 20. Correlation between a conformational change in the coupling factor protein and the high energy state in chloroplasts.
    Ryrie IJ; Jagendorf AT
    J Biol Chem; 1972 Jul; 247(14):4453-9. PubMed ID: 4261396
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.