These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 5025887)
1. [Quantitative morphology and evolution of the brain of the bat]. Schneider R Anat Anz; 1972; 130(3):332-46. PubMed ID: 5025887 [No Abstract] [Full Text] [Related]
3. The efferent connections of the cerebellar nuclei in the pangolin. Bautista NS; Foltz FM J Comp Neurol; 1968 Jan; 132(1):213-26. PubMed ID: 5732430 [No Abstract] [Full Text] [Related]
4. Miniaturization and its effects on cranial morphology in plethodontid salamanders, genus Thorius (Amphibia, Plethodontidae): II. The fate of the brain and sense organs and their role in skull morphogenesis and evolution. Hanken J J Morphol; 1983 Sep; 177(3):255-68. PubMed ID: 6644822 [TBL] [Abstract][Full Text] [Related]
5. The fastigio-tectal projections. An anatomical experimental study. Angaut P Brain Res; 1969 Mar; 13(1):186-9. PubMed ID: 5806138 [No Abstract] [Full Text] [Related]
6. Cranial vasculature of a neotropical fruit-eating bat, Artibeus lituratus. Buchanan GD; Arata AA Anat Anz; 1969; 124(3):314-25. PubMed ID: 5820624 [No Abstract] [Full Text] [Related]
7. The teleostean torus longitudinalis: a short review on its structure, histochemistry, connectivity, possible function and phylogeny. Wullimann MF Eur J Morphol; 1994 Aug; 32(2-4):235-42. PubMed ID: 7803172 [TBL] [Abstract][Full Text] [Related]
8. Can skull morphology be used to predict ecological relationships between bat species? A test using two cryptic species of pipistrelle. Barlow KE; Jones G; Barratt EM Proc Biol Sci; 1997 Nov; 264(1388):1695-700. PubMed ID: 9404031 [TBL] [Abstract][Full Text] [Related]
9. Support for the allotonic frequency hypothesis in an insectivorous bat community. Schoeman MC; Jacobs DS Oecologia; 2003 Jan; 134(1):154-62. PubMed ID: 12647192 [TBL] [Abstract][Full Text] [Related]
10. Trigemino-cerebellar fiber connections in the goat studied by means of the retrograde cell degeneration method. Karamanlidis A J Comp Neurol; 1968 May; 133(1):71-88. PubMed ID: 5721483 [No Abstract] [Full Text] [Related]
11. [Simple structures in the cerebellar corpus of placental mammals]. Hackethal H J Hirnforsch; 1971-1972; 13(4):279-90. PubMed ID: 5155699 [No Abstract] [Full Text] [Related]
12. Comparative studies of brain evolution: a critical insight from the Chiroptera. Dechmann DK; Safi K Biol Rev Camb Philos Soc; 2009 Feb; 84(1):161-72. PubMed ID: 19183335 [TBL] [Abstract][Full Text] [Related]
13. [Characterization of the bat auditory system by reactions to ultrasonic stimuli]. Vasil'ev AG; Mamiushkin DP Fiziol Zh SSSR Im I M Sechenova; 1967 Dec; 53(12):1407-13. PubMed ID: 5615337 [No Abstract] [Full Text] [Related]
14. [Subcortical and cortical topographic landmarks with reference to the natural variability of the cat's brain]. Zambrzhitskiĭ IA Arkh Anat Gistol Embriol; 1970 Jan; 58(1):89-96. PubMed ID: 5447391 [No Abstract] [Full Text] [Related]
15. Endocast morphology of Hadar hominid AL 162-28. Holloway RL; Kimbel WH Nature; 1986 May 29-Jun 4; 321(6069):536-7. PubMed ID: 3086745 [No Abstract] [Full Text] [Related]
16. A unique intraorbital osseous structure in the large fruit-eating bat (Artibeus lituratus). Machado M; dos Santos Schmidt EM; Margarido TC; Montiani-Ferreira F Vet Ophthalmol; 2007; 10(2):100-5. PubMed ID: 17324165 [TBL] [Abstract][Full Text] [Related]
17. [Comparative histological studies on the functional morphology of the optic tectum of various teleosts]. Winkelmann E; Winkelmann L J Hirnforsch; 1968; 10(1):1-16. PubMed ID: 5639335 [No Abstract] [Full Text] [Related]