BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 5027742)

  • 1. Studies of manganous nucleotide complexes with uridine diphosphate-glucose pyrophosphorylase, formyltetrahydrofolate synthetase, and creatine kinase. Mechanism of water proton magnetic relaxation from frequency dependent measurements.
    Reed GH; Diefenbach H; Cohn M
    J Biol Chem; 1972 May; 247(10):3066-72. PubMed ID: 5027742
    [No Abstract]   [Full Text] [Related]  

  • 2. Electron paramagnetic resonance and water proton relaxation rate studies of formyltetrahydrofolate synthetase-manganous ion complexes. Evidence for involvement of substrates in the promotion of a catalytically competent active site.
    Buttlaire DH; Reed GH; Himes R
    J Biol Chem; 1975 Jan; 250(1):261-70. PubMed ID: 166989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium and water proton relaxation rate enhancement properties of formyltetrahydrofolate synthetase-manganous ion-substrate complexes.
    Buttlaire DH; Reed GH; Himes RH
    J Biol Chem; 1975 Jan; 250(1):254-60. PubMed ID: 166988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the active site structures of arginine kinase-substrate complexes. Water proton magnetic relaxation rates and electron paramagnetic resonance spectra of manganous-enzyme complexes with substrates and of a transition state analog.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5741-8. PubMed ID: 4369851
    [No Abstract]   [Full Text] [Related]  

  • 5. Structural changes induced by substrates and anions at the active site of creatine kinase. Electron paramagnetic resonance and nuclear magnetic relaxation rate studies of the manganous complexes.
    Reed GH; Cohn M
    J Biol Chem; 1972 May; 247(10):3073-81. PubMed ID: 4337505
    [No Abstract]   [Full Text] [Related]  

  • 6. Structural studies of transition state analog complexes of creatine kinase.
    Reed GH; McLaughlin AC
    Ann N Y Acad Sci; 1973 Dec; 222():118-29. PubMed ID: 4361852
    [No Abstract]   [Full Text] [Related]  

  • 7. Magnetic resonance study of the three-dimensional structure of creatine kinase-substrate complexes. Implications for substrate specificity and catalytic mechanism.
    McLaughlin AC; Leigh JS; Cohn M
    J Biol Chem; 1976 May; 251(9):2777-87. PubMed ID: 177421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of manganous ion, substrates, and anions with arginine kinase. Magnetic relaxation rate studies of water protons and kinetic anion effects.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5733-40. PubMed ID: 4370118
    [No Abstract]   [Full Text] [Related]  

  • 9. The binding of manganese-nucleoside diphosphates to creatine kinase as determined by proton relaxation rate measurements.
    O'Sullivan WJ; Reed GH; Marsden KH; Gough GR; Lee CS
    J Biol Chem; 1972 Dec; 247(24):7839-43. PubMed ID: 4640926
    [No Abstract]   [Full Text] [Related]  

  • 10. Formyltetrahydrofolate synthetase. Binding of folate substrates and kinetics of the reverse reaction.
    Curthoys NP; Rabinowitz JC
    J Biol Chem; 1972 Apr; 247(7):1965-71. PubMed ID: 5016638
    [No Abstract]   [Full Text] [Related]  

  • 11. Magnetic resonance studies of the interaction of spin-labeled creatine kinase with paramagnetic manganese-substrate complexes.
    Cohn M; Diefenbach H; Taylor JS
    J Biol Chem; 1971 Oct; 246(19):6037-42. PubMed ID: 4330065
    [No Abstract]   [Full Text] [Related]  

  • 12. Uridine diphosphate glucose pyrophosphorylase. 3. Catalytic mechanism.
    Gillett TA; Levine S; Hansen RG
    J Biol Chem; 1971 Apr; 246(8):2551-4. PubMed ID: 4324217
    [No Abstract]   [Full Text] [Related]  

  • 13. Magnetic resonance studies of specificity in binding and catalysis of phosphotransferases.
    Cohn M
    Ciba Found Symp; 1975; (31):87-104. PubMed ID: 168046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of adenosine 5'-diphosphate to creatine kinase. An investigation using intermolecular nuclear Overhauser effect measurements.
    James TL
    Biochemistry; 1976 Oct; 15(21):4724-30. PubMed ID: 974086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of metal-nucleotide complexes bound to creatine kinase: 31P NMR measurements using Mn(II) and Co(II).
    Jarori GK; Ray BD; Nageswara Rao BD
    Biochemistry; 1985 Jul; 24(14):3487-94. PubMed ID: 4041424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance studies on manganese-nucleotide complexes of phosphoglycerate kinase.
    Chapman BE; O'Sullivan WJ; Scopes RK; Reed GH
    Biochemistry; 1977 Mar; 16(5):1005-10. PubMed ID: 321006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereochemical courses of nucleotidyltransferase and phosphotransferase action. Uridine diphosphate glucose pyrophosphorylase, galactose-1-phosphate uridylyltransferase, adenylate kinase, and nucleoside diphosphate kinase.
    Sheu KF; Richard JP; Frey PA
    Biochemistry; 1979 Dec; 18(25):5548-56. PubMed ID: 229894
    [No Abstract]   [Full Text] [Related]  

  • 18. Formyltetrahydrofolate synthetase. Binding of adenosine triphosphate and related ligands determined by partition equilibrium.
    Curthoys NP; Rabinowitz JC
    J Biol Chem; 1971 Nov; 246(22):6942-52. PubMed ID: 5126227
    [No Abstract]   [Full Text] [Related]  

  • 19. Specificity of creatine kinase for guanidino substrates. Kinetic and proton nuclear magnetic relaxation rate studies.
    McLaughlin AC; Cohn M; Kenyon GL
    J Biol Chem; 1972 Jul; 247(13):4382-8. PubMed ID: 5035696
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of the lysyl residue at the active site of creatine kinase. Nuclear Overhauser effect studies.
    James TL; Cohn M
    J Biol Chem; 1974 Apr; 249(8):2599-604. PubMed ID: 4856652
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.