These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 5028291)

  • 1. Patterns of spontaneous bioelectric activity during maturation in culture of fetal rodent medulla and spinal cord tissues.
    Corner MA; Crain SM
    J Neurobiol; 1972; 3(1):25-45. PubMed ID: 5028291
    [No Abstract]   [Full Text] [Related]  

  • 2. The development of spontaneous bioelectric activities and strychnine sensitivity during maturation in culture of embryonic chick and rodent central nervous tissues.
    Corner MA; Crain SM
    Arch Int Pharmacodyn Ther; 1969 Dec; 182(2):404-6. PubMed ID: 5371194
    [No Abstract]   [Full Text] [Related]  

  • 3. Rhythmic neuronal discharge in the medulla and spinal cord of fetal rats in the absence of synaptic transmission.
    Ren J; Momose-Sato Y; Sato K; Greer JJ
    J Neurophysiol; 2006 Jan; 95(1):527-34. PubMed ID: 16148265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional localization of patterned spontaneous discharges during maturation in culture of fetal mouse medulla and spinal cord explants.
    Tarrade T; Crain SM
    Dev Neurosci; 1978; 1(3-4):119-32. PubMed ID: 756377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adrenaline contributes to prenatal respiratory maturation in rat medulla-spinal cord preparation.
    Fujii M; Umezawa K; Arata A
    Brain Res; 2006 May; 1090(1):45-50. PubMed ID: 16643861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Electrical responses to visual stimulation in the midbrain, medulla oblongata and spinal cord of the lamprey].
    Veselkin NP
    Fiziol Zh SSSR Im I M Sechenova; 1966 Feb; 52(2):131-6. PubMed ID: 6003901
    [No Abstract]   [Full Text] [Related]  

  • 7. Development of specific sensory-evoked synaptic networks in fetal mouse cord-brainstem cultures.
    Crain SM; Peterson ER
    Science; 1975 Apr; 188(4185):275-8. PubMed ID: 1118729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rostral ventromedial medulla control of spinal sensory processing in normal and pathophysiological states.
    Bee LA; Dickenson AH
    Neuroscience; 2007 Jul; 147(3):786-93. PubMed ID: 17570596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frog's dorsal column nuclei potentials generated by stimulation of the sciatic nerve.
    Fernández de Molina A; García-Sánchez JL; Ruiz Marcos A
    Trab Inst Cajal Invest Biol; 1966; 58():171-84. PubMed ID: 5991740
    [No Abstract]   [Full Text] [Related]  

  • 10. Development of synapses and myelin in cultures of dissociated embryonic mouse spinal cord, medulla and cerebrum.
    Bornshein MB; Model PG
    Brain Res; 1972 Feb; 37(2):287-93. PubMed ID: 5061116
    [No Abstract]   [Full Text] [Related]  

  • 11. Bioelectric interactions between cultured fetal rodent spinal cord and skeletal muscle after innervation in vitro.
    Crain SM
    J Exp Zool; 1970 Apr; 173(4):353-69. PubMed ID: 5429513
    [No Abstract]   [Full Text] [Related]  

  • 12. [Depolarization of somesthetic afferents at the level of the Burdach nucleus induced by stimulation of the vago-aortic trunk].
    Gahery Y; Vigier D
    J Physiol (Paris); 1969; 61 Suppl 1():130-1. PubMed ID: 5402004
    [No Abstract]   [Full Text] [Related]  

  • 13. Accomodation and Na-inactivation in cat spinal motor neurons.
    Schlue WR; Richter DW; Mauritz KH; Nacimiento AC
    Pflugers Arch; 1972; 332():Suppl 332:R83. PubMed ID: 5065866
    [No Abstract]   [Full Text] [Related]  

  • 14. [Structural and functional characteristics of supraspinal fibers monosynaptically connected with the lumbar motoneurons of the spinal cord from the frog, Rana ridibunda].
    Chmykhova NM; Babalian AL
    Zh Evol Biokhim Fiziol; 1998; 34(4):458-70. PubMed ID: 9859183
    [No Abstract]   [Full Text] [Related]  

  • 15. [The effect of nembutal on arterial pressure reactions evoked by stimulation of the hypothalamus, medulla oblongata and lateral horns of the spinal cord].
    Tsyrlin VA
    Biull Eksp Biol Med; 1968; 65(6):62-5. PubMed ID: 5757841
    [No Abstract]   [Full Text] [Related]  

  • 16. [Electrophysiological characteristics of the bulbar respiratory neurons].
    Zhigaĭlo TL; Nuridzhanova AA; Preobrazhenskiĭ NN
    Fiziol Zh (1978); 1984; 30(6):660-7. PubMed ID: 6519269
    [No Abstract]   [Full Text] [Related]  

  • 17. [Role of the reticular formation in the elaboration of bulbo-spinal discharges of somatesthetic origin in the cat under chloralose].
    Hossmann KA; Buser P; Lamarche M
    Arch Ital Biol; 1971 Dec; 109(4):367-96. PubMed ID: 5151236
    [No Abstract]   [Full Text] [Related]  

  • 18. Restorative effects of cyclic AMP on complex bioelectric activities of cultured fetal rodent CNS tissues after acute CA++ deprivation.
    Crain SM; Pollack ED
    J Neurobiol; 1973; 4(4):321-42. PubMed ID: 4353406
    [No Abstract]   [Full Text] [Related]  

  • 19. Contribution of Ca2+-dependent conductances to membrane potential fluctuations of medullary respiratory neurons of newborn rats in vitro.
    Onimaru H; Ballanyi K; Homma I
    J Physiol; 2003 Nov; 552(Pt 3):727-41. PubMed ID: 12937288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Current trends in the study of the respiratory center].
    Hukuhara T
    Kokyu To Junkan; 1984 May; 32(5):429-39. PubMed ID: 6382494
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.