These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 5029432)

  • 21. Effects of unstirred layers on the steady-state zero-current conductance of bilayer membranes mediated by neutral carriers of ions.
    Ciani S; Gambale F; Gliozzi A; Rolandi R
    J Membr Biol; 1975 Oct; 24(1):1-34. PubMed ID: 1195352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. External TEA block of shaker K+ channels is coupled to the movement of K+ ions within the selectivity filter.
    Thompson J; Begenisich T
    J Gen Physiol; 2003 Aug; 122(2):239-46. PubMed ID: 12885878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions of voltage-sensing dyes with membranes. I. Steady-state permeability behaviors induced by cyanine dyes.
    Krasne S
    Biophys J; 1980 Jun; 30(3):415-39. PubMed ID: 7260282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Permeability and interaction of Ca2+ with cGMP-gated ion channels differ in retinal rod and cone photoreceptors.
    Picones A; Korenbrot JI
    Biophys J; 1995 Jul; 69(1):120-7. PubMed ID: 7545443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A single-file model for potassium transport in squid giant axon. Simulation of potassium currents at normal ionic concentrations.
    Kohler HH
    Biophys J; 1977 Aug; 19(2):125-40. PubMed ID: 880331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effect of calcium ions on potential-dependent potassium channels in the membrane of the soma of giant mollusc neurons].
    Magura IS; dolgaia EV; Vadas I
    Neirofiziologiia; 1976; 8(4):400-9. PubMed ID: 958528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The physical interpretation of mathematical models for sodium permeability changes in excitable membranes.
    Jakobsson E
    Biophys J; 1973 Nov; 13(11):1200-11. PubMed ID: 4754199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of space charge on the ionic currents through biological membranes.
    Ruppersberg JP; Rüdel R
    J Theor Biol; 1988 Feb; 130(4):431-45. PubMed ID: 2460705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin.
    Strickholm A
    Biophys J; 1981 Sep; 35(3):677-97. PubMed ID: 7272457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlation of electrical and permeability properties of ion-selective membranes.
    Krämer H; Meares P
    Biophys J; 1969 Aug; 9(8):1006-28. PubMed ID: 5822426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conducting sites in excitable membranes.
    Schoffeniels E
    Adv Neurol; 1986; 44():191-210. PubMed ID: 2422891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transmembrane electrical potential of excitable membranes: a pore analysis influence of surface charges and surface dipoles.
    Gavach C
    J Physiol (Paris); 1981 May; 77(9):1029-33. PubMed ID: 6286954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unified modeling of conductance kinetics for low- and high-conductance potassium ion channels.
    Tolokh IS; Goldman S; Gray CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011902. PubMed ID: 16907122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ion permeation through the L-type Ca2+ channel in rat phaeochromocytoma cells: two sets of ion binding sites in the pore.
    Kuo CC; Hess P
    J Physiol; 1993 Jul; 466():629-55. PubMed ID: 8410710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ionic channels in excitable membranes. Current problems and biophysical approaches.
    Hille B
    Biophys J; 1978 May; 22(2):283-94. PubMed ID: 656545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of proteins in a dipole model for steady-state ionic transport through biological membranes.
    Van Lamsweerde-Gallez D; Meessen A
    J Membr Biol; 1975 Aug; 23(2):103-37. PubMed ID: 1177292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rate theory models for ion transport through rigid pores. II. Time-dependent analysis of the single-file model with special reference to oscillatory behavior.
    Stephan W; Frehland E
    J Theor Biol; 1983 Aug; 103(4):481-505. PubMed ID: 6314056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slow potential changes due to transport number effects in cells with unstirred membrane invaginations or dendrites.
    Barry PH
    J Membr Biol; 1984; 82(3):221-39. PubMed ID: 6099423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane potentials at zero current. The significance of a constant ionic permeability ratio.
    Sandblom JP; Eisenman G
    Biophys J; 1967 May; 7(3):217-42. PubMed ID: 6035122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ion transport in the simplest single file pore.
    Urban BW; Hladky SB
    Biochim Biophys Acta; 1979 Jul; 554(2):410-29. PubMed ID: 486451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.