These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 5030565)

  • 1. Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model.
    Brokaw CJ
    Biophys J; 1972 May; 12(5):564-86. PubMed ID: 5030565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified.
    Brokaw CJ
    Biophys J; 1985 Oct; 48(4):633-42. PubMed ID: 3840393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bend propagation in flagella. I. Derivation of equations of motion and their simulation.
    Hines M; Blum JJ
    Biophys J; 1978 Jul; 23(1):41-57. PubMed ID: 667306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flagellar movement: a sliding filament model.
    Brokaw CJ
    Science; 1972 Nov; 178(4060):455-62. PubMed ID: 4673044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulation of flagellar movement. III. Models incorporating cross-bridge kinetics.
    Brokaw CJ; Rintala DR
    J Mechanochem Cell Motil; 1975; 3(2):77-86. PubMed ID: 1214108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional mechanics of eukaryotic flagella.
    Hines M; Blum JJ
    Biophys J; 1983 Jan; 41(1):67-79. PubMed ID: 6824754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of flagellar movement based on cooperative dynamics of dynein-tubulin cross-bridges.
    Murase M; Shimizu H
    J Theor Biol; 1986 Apr; 119(4):409-33. PubMed ID: 2943943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Models for oscillation and bend propagation by flagella.
    Brokaw CJ
    Symp Soc Exp Biol; 1982; 35():313-38. PubMed ID: 6223398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule sliding, bend initiation, and bend propagation parameters of Ciona sperm flagella altered by viscous load.
    Brokaw CJ
    Cell Motil Cytoskeleton; 1996; 33(1):6-21. PubMed ID: 8824730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of flagellar movement VIII: coordination of dynein by local curvature control can generate helical bending waves.
    Brokaw CJ
    Cell Motil Cytoskeleton; 2002 Oct; 53(2):103-24. PubMed ID: 12211108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel motility pattern in quail spermatozoa with implications for the mechanism of flagellar beating.
    Woolley DM
    Biol Cell; 2007 Dec; 99(12):663-75. PubMed ID: 17561807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubule sliding in reduced-amplitude bending waves of Ciona sperm flagella: resolution of metachronous and synchronous sliding components of stable bending waves.
    Brokaw CJ
    Cell Motil Cytoskeleton; 1993; 26(2):144-62. PubMed ID: 8287500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of flagellar movement. V. oscillation of cross-bridge models with an ATP-concentration-dependent rate function.
    Brokaw CJ; Rintala D
    J Mechanochem Cell Motil; 1977 Sep; 4(3):205-32. PubMed ID: 753901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation of flagellar movement IX. Oscillation and symmetry breaking in a model for short flagella and nodal cilia.
    Brokaw CJ
    Cell Motil Cytoskeleton; 2005 Jan; 60(1):35-47. PubMed ID: 15573415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of flagellar bending in hamster spermatozoa: characterization of an effective stroke.
    Kinukawa M; Ohmuro J; Baba SA; Murashige S; Okuno M; Nagata M; Aoki F
    Biol Reprod; 2005 Dec; 73(6):1269-74. PubMed ID: 16107609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule sliding in reduced-amplitude bending waves of Ciona sperm flagella: bending waves attenuated by lithium.
    Brokaw CJ
    Cell Motil Cytoskeleton; 1994; 27(2):150-60. PubMed ID: 8162621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. External mechanical control of the timing of bend initiation in sea urchin sperm flagella.
    Eshel D; Gibbons IR
    Cell Motil Cytoskeleton; 1989; 14(3):416-23. PubMed ID: 2582499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation of flagellar movement. IV. Properties of an oscillatory two-state cross-bridge model.
    Brokaw CJ
    Biophys J; 1976 Sep; 16(9):1029-41. PubMed ID: 963203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation of bend propagation by axoplasmic microtubules.
    Brokaw CJ
    Cell Motil Cytoskeleton; 1986; 6(3):347-53. PubMed ID: 2427228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation of flagellar movement X: doublet pair splitting and bend propagation modeled using stochastic dynein kinetics.
    Brokaw CJ
    Cytoskeleton (Hoboken); 2014 Apr; 71(4):273-84. PubMed ID: 24574072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.