These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 5030618)

  • 1. Regulation of valine catabolism in Pseudomonas putida.
    Marshall VD; Sokatch JR
    J Bacteriol; 1972 Jun; 110(3):1073-81. PubMed ID: 5030618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common enzymes of branched-chain amino acid catabolism in Pseudomonas putida.
    Martin RR; Marshall VD; Sokatch JR; Unger L
    J Bacteriol; 1973 Jul; 115(1):198-204. PubMed ID: 4352175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of leucine catabolism in Pseudomonas putida.
    Massey LK; Conrad RS; Sokatch JR
    J Bacteriol; 1974 Apr; 118(1):112-20. PubMed ID: 4150714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D- and L-isoleucine metabolism and regulation of their pathways in Pseudomonas putida.
    Conrad RS; Massey LK; Sokatch JR
    J Bacteriol; 1974 Apr; 118(1):103-11. PubMed ID: 4150713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification of a branched-chain keto acid dehydrogenase from Pseudomonas putida.
    Sokatch JR; McCully V; Roberts CM
    J Bacteriol; 1981 Nov; 148(2):647-52. PubMed ID: 7298579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinated expression of valine catabolic enzymes during adipogenesis: analysis of activity, mRNA, protein levels, and metabolic consequences.
    Kedishvili NY; Popov KM; Jaskiewicz JA; Harris RA
    Arch Biochem Biophys; 1994 Dec; 315(2):317-22. PubMed ID: 7527207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipoic acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis.
    Taylor NL; Heazlewood JL; Day DA; Millar AH
    Plant Physiol; 2004 Feb; 134(2):838-48. PubMed ID: 14764908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of branched-chain amino acid antagonism in the rat on tissue amino acid and keto acid concentrations.
    Shinnick FL; Harper AE
    J Nutr; 1977 May; 107(5):887-95. PubMed ID: 870654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The D-2-hydroxyacid dehydrogenase incorrectly annotated PanE is the sole reduction system for branched-chain 2-keto acids in Lactococcus lactis.
    Chambellon E; Rijnen L; Lorquet F; Gitton C; van Hylckama Vlieg JE; Wouters JA; Yvon M
    J Bacteriol; 2009 Feb; 191(3):873-81. PubMed ID: 19047348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transamination and oxidation of leucine and valine in rat adipose tissue.
    Frick GP; Blinder L; Goodman HM
    J Biol Chem; 1988 Mar; 263(7):3245-9. PubMed ID: 3125177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolism of branched-chain amino acids by diaphragm muscles of fasted and diabetic rats.
    Aftring RP; Manos PN; Buse MG
    Metabolism; 1985 Aug; 34(8):702-11. PubMed ID: 4021802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separate regulation of transport and biosynthesis of leucine, isoleucine, and valine in bacteria.
    Quay SC; Oxender DL; Tsuyumu S; Umbarger HE
    J Bacteriol; 1975 Jun; 122(3):994-1000. PubMed ID: 1097409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valine metabolism in vivo: effects of high dietary levels of leucine and isoleucine.
    Block KP; Harper AE
    Metabolism; 1984 Jun; 33(6):559-66. PubMed ID: 6727655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro transcriptional studies of the bkd operon of Pseudomonas putida: L-branched-chain amino acids and D-leucine are the inducers.
    Madhusudhan KT; Luo J; Sokatch JR
    J Bacteriol; 1999 May; 181(9):2889-94. PubMed ID: 10217783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repression and inhibition of transport systems for branched-chain amino acids in Salmonella typhimurium.
    Kiritani K; Ohnishi K
    J Bacteriol; 1977 Feb; 129(2):589-98. PubMed ID: 320186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The valine catabolic pathway in human liver: effect of cirrhosis on enzyme activities.
    Taniguchi K; Nonami T; Nakao A; Harada A; Kurokawa T; Sugiyama S; Fujitsuka N; Shimomura Y; Hutson SM; Harris RA; Takagi H
    Hepatology; 1996 Dec; 24(6):1395-8. PubMed ID: 8938168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acid-requiring mutant of bacillus subtilis defective in branched chain alpha-keto acid dehydrogenase.
    Willecke K; Pardee AB
    J Biol Chem; 1971 Sep; 246(17):5264-72. PubMed ID: 4999353
    [No Abstract]   [Full Text] [Related]  

  • 18. Biosynthesis of branched-chain amino acids in Schizosaccharomyces pombe: regulation of the enzymes involved in isoleucine, valine, and leucine synthesis.
    McDonald RA; Satyanarayana T; Kaplan JG
    Can J Biochem; 1974 Jan; 52(1):51-9. PubMed ID: 4821071
    [No Abstract]   [Full Text] [Related]  

  • 19. A single acyl-CoA dehydrogenase is required for catabolism of isoleucine, valine and short-chain fatty acids in Aspergillus nidulans.
    Maggio-Hall LA; Lyne P; Wolff JA; Keller NP
    Fungal Genet Biol; 2008 Mar; 45(3):180-9. PubMed ID: 17656140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus.
    Beck HC; Hansen AM; Lauritsen FR
    J Appl Microbiol; 2004; 96(5):1185-93. PubMed ID: 15078537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.