These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 503211)

  • 21. The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature.
    Antonov VF; Petrov VV; Molnar AA; Predvoditelev DA; Ivanov AS
    Nature; 1980 Feb; 283(5747):585-6. PubMed ID: 6153458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alamethicin-like behaviour of new 18-residue peptaibols, trichorzins PA. Role of the C-terminal amino-alcohol in the ion channel forming activity.
    Duval D; Cosette P; Rebuffat S; Duclohier H; Bodo B; Molle G
    Biochim Biophys Acta; 1998 Mar; 1369(2):309-19. PubMed ID: 9518665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis.
    Mak DO; Webb WW
    Biophys J; 1995 Dec; 69(6):2337-49. PubMed ID: 8599640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Voltage-dependent interaction of the peptaibol antibiotic zervamicin II with phospholipid vesicles.
    Kropacheva TN; Raap J
    FEBS Lett; 1999 Nov; 460(3):500-4. PubMed ID: 10556525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Amphotericin B channel conductance inactivation].
    Ibragimova VKh; Alieva IN; Aliev DI
    Tsitologiia; 2003; 45(8):804-11. PubMed ID: 15216632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voltage-dependent conductance induced by alamethicin-phospholipid conjugates in lipid bilayers.
    Latorre R; Miller CG; Quay S
    Biophys J; 1981 Dec; 36(3):803-9. PubMed ID: 7326333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Fluctuation in the electric conductivity of lipid bilayers after one-sided application of polyene antibiotics].
    Bezrukov SM; Brutian RA
    Biofizika; 1987; 32(3):526-8. PubMed ID: 2441767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Histograms of conductance fluctuations induced by alamethicin in black lipid membranes.
    Eldridge CA; Morowitz HJ
    Biochem Biophys Res Commun; 1978 Nov; 85(1):264-72. PubMed ID: 743279
    [No Abstract]   [Full Text] [Related]  

  • 29. Two classes of alamethicin transmembrane channels: molecular models from single-channel properties.
    Mak DO; Webb WW
    Biophys J; 1995 Dec; 69(6):2323-36. PubMed ID: 8599639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monazomycin-induced single channels. I. Characterization of the elementary conductance events.
    Andersen OS; Muller RU
    J Gen Physiol; 1982 Sep; 80(3):403-26. PubMed ID: 6292330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A three state model for alamethicin conductance in bilayer membranes.
    Bruner LJ
    J Theor Biol; 1985 Nov; 117(2):265-76. PubMed ID: 4079449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic characteristics of the excitability-inducing material channel in oxidized cholesterol and brain lipid bilayer membranes.
    Alvarez O; Latorre R; Verdugo P
    J Gen Physiol; 1975 Apr; 65(4):421-39. PubMed ID: 1151321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pore formation in lipid membranes by alamethicin.
    Fringeli UP; Fringeli M
    Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3852-6. PubMed ID: 291045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alamethicin channels incorporated into frog node of ranvier: calcium-induced inactivation and membrane surface charges.
    Cahalan MD; Hall J
    J Gen Physiol; 1982 Mar; 79(3):411-36. PubMed ID: 6281358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The lowest conductance state of the alamethicin pore.
    Hanke W; Boheim G
    Biochim Biophys Acta; 1980 Mar; 596(3):456-62. PubMed ID: 6153907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclodextrin-scaffolded alamethicin with remarkably efficient membrane permeabilizing properties and membrane current conductance.
    Hjørringgaard CU; Vad BS; Matchkov VV; Nielsen SB; Vosegaard T; Nielsen NC; Otzen DE; Skrydstrup T
    J Phys Chem B; 2012 Jul; 116(26):7652-9. PubMed ID: 22676384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alamethicin adsorption to a planar lipid bilayer.
    Vodyanoy I; Hall JE; Vodyanoy V
    Biophys J; 1988 May; 53(5):649-58. PubMed ID: 3390515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ion channels of alamethicin dimer N-terminally linked by disulfide bond.
    Okazaki T; Sakoh M; Nagaoka Y; Asami K
    Biophys J; 2003 Jul; 85(1):267-73. PubMed ID: 12829482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differences in ion-channel formation by ampullosporins B, C, D and semisynthetic desacetyltryptophanyl ampullosporin A.
    Grigoriev PA; Kronen M; Schlegel B; Härtl A; Gräfe U
    Bioelectrochemistry; 2002 Sep; 57(2):119-21. PubMed ID: 12160607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conductivity noise in transmembrane ion channels due to ion concentration fluctuations via diffusion.
    Mak DO; Webb WW
    Biophys J; 1997 Mar; 72(3):1153-64. PubMed ID: 9138563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.