These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 503211)

  • 41. Thermodynamic analysis of incorporation and aggregation in a membrane: application to the pore-forming peptide alamethicin.
    Schwarz G; Stankowski S; Rizzo V
    Biochim Biophys Acta; 1986 Sep; 861(1):141-51. PubMed ID: 3756150
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A lipid vesicle system for probing voltage-dependent peptide-lipid interactions: application to alamethicin channel formation.
    Woolley GA; Deber CM
    Biopolymers; 1989 Jan; 28(1):267-72. PubMed ID: 2470433
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ion channel stabilization of synthetic alamethicin analogs by rings of inter-helix H-bonds.
    Molle G; Dugast JY; Spach G; Duclohier H
    Biophys J; 1996 Apr; 70(4):1669-75. PubMed ID: 8785325
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electric field dependence of alamethicin channels.
    Brumfeld V; Miller IR
    Biochim Biophys Acta; 1990 May; 1024(1):49-53. PubMed ID: 1692484
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intrinsic rectification of ion flux in alamethicin channels: studies with an alamethicin dimer.
    Woolley GA; Biggin PC; Schultz A; Lien L; Jaikaran DC; Breed J; Crowhurst K; Sansom MS
    Biophys J; 1997 Aug; 73(2):770-8. PubMed ID: 9251793
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of polycations on ion channels formed by neutral and negatively charged alamethicins.
    Rink T; Bartel H; Jung G; Bannwarth W; Boheim G
    Eur Biophys J; 1994; 23(3):155-65. PubMed ID: 7525266
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lipid dependence of peptide-membrane interactions. Bilayer affinity and aggregation of the peptide alamethicin.
    Stankowski S; Schwarz G
    FEBS Lett; 1989 Jul; 250(2):556-60. PubMed ID: 2753150
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of temperature on the inward rectifier and gramicidin A-induced channels in the membrane of frog skeletal muscle fibres.
    Caffier G; Shvinka NE
    Gen Physiol Biophys; 1986 Feb; 5(1):47-51. PubMed ID: 2429894
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of free radicals on the conductance induced by alamethicin in planar lipid membranes: activation and inactivation.
    Zeidler U; Wilhelm M; Stark G
    Biochim Biophys Acta; 1996 May; 1281(1):73-9. PubMed ID: 8652608
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Transport of adenosine triphosphate through alamethicin channels in a bimolecular lipid membrane].
    Butylin AA; Ritov VB
    Dokl Akad Nauk SSSR; 1990; 310(3):731-4. PubMed ID: 1692527
    [No Abstract]   [Full Text] [Related]  

  • 51. Electrically gated ionic channels in lipid bilayers.
    Ehrenstein G; Lecar H
    Q Rev Biophys; 1977 Feb; 10(1):1-34. PubMed ID: 327501
    [No Abstract]   [Full Text] [Related]  

  • 52. Autocatalytic transport of the peptide antibiotics suzukacillin and alamethicin across lipid membranes.
    Schindler H
    FEBS Lett; 1979 Aug; 104(1):157-60. PubMed ID: 477976
    [No Abstract]   [Full Text] [Related]  

  • 53. Interaction of alamethicin with lecithin bilayers: a 31P and 2H NMR study.
    Banerjee U; Zidovetzki R; Birge RR; Chan SI
    Biochemistry; 1985 Dec; 24(26):7621-7. PubMed ID: 2418870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dipole moment of alamethicin as related to voltage-dependent conductance in lipid bilayers.
    Yantorno R; Takashima S; Mueller P
    Biophys J; 1982 May; 38(2):105-10. PubMed ID: 7093416
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states.
    Bezrukov SM; Vodyanoy I
    Biophys J; 1993 Jan; 64(1):16-25. PubMed ID: 7679295
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism of voltage-gated channel formation in lipid membranes.
    Guidelli R; Becucci L
    Biochim Biophys Acta; 2016 Apr; 1858(4):748-55. PubMed ID: 26768224
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers.
    Duclohier H; Molle G; Spach G
    Biophys J; 1989 Nov; 56(5):1017-21. PubMed ID: 2481510
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetics and stability of alamethicin conducting channels in lipid bilayers.
    Gordon LG; Haydon DA
    Biochim Biophys Acta; 1976 Jul; 436(3):541-56. PubMed ID: 952910
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluctuation and relaxation analysis of monazomycin-induced conductance in black lipid membranes.
    Moore LE; Neher E
    J Membr Biol; 1976 Jun; 27(4):347-62. PubMed ID: 966263
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ion-channels formed by hypelcins, antibiotic peptides, in planar bilayer lipid membranes.
    Koide N; Asami K; Fujita T
    Biochim Biophys Acta; 1997 May; 1326(1):47-53. PubMed ID: 9188799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.