These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 503211)

  • 61. Electrical oscillation and fluctuation in phospholipid membranes. Phospholipids can form a channel without protein.
    Yoshikawa K; Fujimoto T; Shimooka T; Terada H; Kumazawa N; Ishii T
    Biophys Chem; 1988 Apr; 29(3):293-9. PubMed ID: 2455554
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interaction of the 14-residue peptaibols, harzianins HC, with lipid bilayers: permeability modifications and conductance properties.
    Lucaciu M; Rebuffat S; Goulard C; Duclohier H; Molle G; Bodo B
    Biochim Biophys Acta; 1997 Jan; 1323(1):85-96. PubMed ID: 9030215
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Entropy-driven softening of fluid lipid bilayers by alamethicin.
    Pabst G; Danner S; Podgornik R; Katsaras J
    Langmuir; 2007 Nov; 23(23):11705-11. PubMed ID: 17939689
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bilayers containing calcium ionophore A23187 form channels.
    Balasubramanian SV; Sikdar SK; Easwaran KR
    Biochem Biophys Res Commun; 1992 Dec; 189(2):1038-42. PubMed ID: 1281987
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The induction by protons of ion channels through lipid bilayer membranes.
    Kaufmann K; Silman I
    Biophys Chem; 1983 Sep; 18(2):89-99. PubMed ID: 6313086
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of proline position upon the ion channel activity of alamethicin.
    Kaduk C; Duclohier H; Dathe M; Wenschuh H; Beyermann M; Molle G; Bienert M
    Biophys J; 1997 May; 72(5):2151-9. PubMed ID: 9129817
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fluorescent alamethicin fragments. A study of membrane activity and aqueous phase aggregation.
    Mathew MK; Nagaraj R; Balaram P
    Biochim Biophys Acta; 1981 Dec; 649(2):336-42. PubMed ID: 7317403
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Imaging multiple conductance states in an alamethicin pore.
    Harriss LM; Cronin B; Thompson JR; Wallace MI
    J Am Chem Soc; 2011 Sep; 133(37):14507-9. PubMed ID: 21848341
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Oscillation phenomena in black lipid membranes induced by a single alamethicin pore.
    Boheim G; Hall JE
    Biochim Biophys Acta; 1975 May; 389(3):436-43. PubMed ID: 1173216
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers.
    French RJ; Worley JF; Krueger BK
    Biophys J; 1984 Jan; 45(1):301-10. PubMed ID: 6324910
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids.
    Keller SL; Bezrukov SM; Gruner SM; Tate MW; Vodyanoy I; Parsegian VA
    Biophys J; 1993 Jul; 65(1):23-7. PubMed ID: 8369434
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Proton-induced ion channels through lipid bilayer membranes.
    Kaufmann K; Silman I
    Naturwissenschaften; 1983 Mar; 70(3):147-9. PubMed ID: 6304539
    [No Abstract]   [Full Text] [Related]  

  • 73. Permeation of bacterial cells, permeation of cytoplasmic and artificial membrane vesicles, and channel formation on lipid bilayers by peptide antibiotic AS-48.
    Gálvez A; Maqueda M; Martínez-Bueno M; Valdivia E
    J Bacteriol; 1991 Jan; 173(2):886-92. PubMed ID: 1702784
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Conformational changes in alamethicin associated with substitution of its alpha-methylalanines with leucines: a FTIR spectroscopic analysis and correlation with channel kinetics.
    Haris PI; Molle G; Duclohier H
    Biophys J; 2004 Jan; 86(1 Pt 1):248-53. PubMed ID: 14695266
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Single channel conductance at lipid bilayer membranes in presence of monazomycin.
    Bamberg E; Janko K
    Biochim Biophys Acta; 1976 Mar; 426(3):447-50. PubMed ID: 57800
    [No Abstract]   [Full Text] [Related]  

  • 76. Studies on sodium channels reconstituted in lipid bilayers: inferences about molecular mechanisms derived from single-channel recordings.
    Montal M; Hartshorne R; Keller B
    Soc Gen Physiol Ser; 1987; 41():149-65. PubMed ID: 2436307
    [No Abstract]   [Full Text] [Related]  

  • 77. [Transport of large organic ions through syringomycin channels in the membranes containing dipole modifiers].
    Efimova SS; Ostroumova OS; Malev VV; Shchagina LV
    Tsitologiia; 2011; 53(5):450-6. PubMed ID: 21786689
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Charge-pulse relaxation studies with lipid bilayer membranes modified by alamethicin.
    Boheim G; Benz R
    Biochim Biophys Acta; 1978 Feb; 507(2):262-70. PubMed ID: 626734
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of Transmembrane Potential and Defects on the Permeabilization of Lipid Bilayers by Alamethicin, an Ion-Channel-Forming Peptide.
    Su Z; Shodiev M; Leitch JJ; Abbasi F; Lipkowski J
    Langmuir; 2018 May; 34(21):6249-6260. PubMed ID: 29722994
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes.
    Kagan BL; Selsted ME; Ganz T; Lehrer RI
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):210-4. PubMed ID: 1688654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.