These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 50323)

  • 21. Vitamin K dependent carboxylation: synthesis and biological properties of tetrazolyl analogues of pentapeptidic substrates.
    Dubois J; Bory S; Gaudry M; Marquet A
    J Med Chem; 1984 Sep; 27(9):1230-3. PubMed ID: 6088772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vitamin K-dependent formation of gamma-carboxyglutamic acid.
    Stenflo J; Suttie JW
    Annu Rev Biochem; 1977; 46():157-72. PubMed ID: 332061
    [No Abstract]   [Full Text] [Related]  

  • 23. Mass-spectrometric identification and sequence location of the ten residues of the new amino acid (gamma-Carboxyglutamic acid) in the N-terminal region of prothrombin.
    Morris HR; Dell A
    Biochem J; 1976 Mar; 153(3):663-79. PubMed ID: 942379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A conserved epitope on several human vitamin K-dependent proteins. Location of the antigenic site and influence of metal ions on antibody binding.
    Church WR; Messier T; Howard PR; Amiral J; Meyer D; Mann KG
    J Biol Chem; 1988 May; 263(13):6259-67. PubMed ID: 2452160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of a gamma-carboxyglutamic acid containing heptapeptide corresponding to bovine prothrombin residues 17-23.
    Hoke RA; Deerfield DW; Pedersen LG; Koehler KA; Hiskey RG
    Int J Pept Protein Res; 1986 Dec; 28(6):569-78. PubMed ID: 3818174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct identification of gamma-carboxyglutamic acid in the sequencing of vitamin K-dependent proteins.
    Cairns JR; Williamson MK; Price PA
    Anal Biochem; 1991 Nov; 199(1):93-7. PubMed ID: 1807167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of γ-carboxylated tryptic peptides by collision-induced dissociation and electron transfer dissociation mass spectrometry.
    Ramström M; Sandberg H
    Eur J Mass Spectrom (Chichester); 2011; 17(5):497-506. PubMed ID: 22173536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Primary structure of the vitamin K-dependent part of prothrombin.
    Magnusson S; Sottrup-Jensen L; Petersen TE; Morris HR; Dell A
    FEBS Lett; 1974 Aug; 44(2):189-93. PubMed ID: 4472513
    [No Abstract]   [Full Text] [Related]  

  • 29. The kinetics of activation of normal and gamma-carboxyglutamic acid-deficient prothrombins.
    Malhotra OP; Nesheim ME; Mann KG
    J Biol Chem; 1985 Jan; 260(1):279-87. PubMed ID: 2578125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Partially carboxylated prothrombins. II. Effect of gamma-carboxyglutamyl residues on the properties of prothrombin fragment 1.
    Malhotra OP
    Biochim Biophys Acta; 1982 Apr; 702(2):185-92. PubMed ID: 6177346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vitamin K-dependent carboxylation of glutamic acid residues to gamma-carboxyglutamic acid in lung microsomes.
    Bell RG
    Arch Biochem Biophys; 1980 Aug; 203(1):58-64. PubMed ID: 7406513
    [No Abstract]   [Full Text] [Related]  

  • 32. The importance of specific gamma-carboxyglutamic acid residues in prothrombin. Evaluation by site-specific mutagenesis.
    Ratcliffe JV; Furie B; Furie BC
    J Biol Chem; 1993 Nov; 268(32):24339-45. PubMed ID: 8226983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The gamma-carboxylation recognition site is sufficient to direct vitamin K-dependent carboxylation on an adjacent glutamate-rich region of thrombin in a propeptide-thrombin chimera.
    Furie BC; Ratcliffe JV; Tward J; Jorgensen MJ; Blaszkowsky LS; DiMichele D; Furie B
    J Biol Chem; 1997 Nov; 272(45):28258-62. PubMed ID: 9353278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for the vitamin K-dependent gamma-carboxylation of the first glutamic acid residue in peptide substrates containing a diglutamyl sequence.
    Burgess AI; Esnouf MP; Rose K; Offord RE
    Biochem J; 1983 Oct; 215(1):75-81. PubMed ID: 6138032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Vitamin K and bone metabolism - on the effect of vitamin K deficiency and gamma-carboxyglutamic acid (author's transl)].
    Mutoh Y
    Nihon Seikeigeka Gakkai Zasshi; 1980 Dec; 54(12):1733-43. PubMed ID: 7288229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression and characterization of recombinant vitamin K-dependent gamma-glutamyl carboxylase from an invertebrate, Conus textile.
    Czerwiec E; Begley GS; Bronstein M; Stenflo J; Taylor K; Furie BC; Furie B
    Eur J Biochem; 2002 Dec; 269(24):6162-72. PubMed ID: 12473112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vitamin K-dependent gamma-carboxyglutamic acid formation by kidney microsomes in vitro.
    Hauschka PV; Friedman PA; Traverso HP; Gallop PM
    Biochem Biophys Res Commun; 1976 Aug; 71(4):1207-13. PubMed ID: 61755
    [No Abstract]   [Full Text] [Related]  

  • 38. Gamma-carboxyglutamic acid: identification and distribution in vitamin K-dependent proteins.
    Nelsestuen GL; Zytkovicz TH; Howard JB
    Mayo Clin Proc; 1974 Dec; 49(12):941-4. PubMed ID: 4444341
    [No Abstract]   [Full Text] [Related]  

  • 39. Amino acid sequence of the light chain of bovine protein C.
    Fernlund P; Stenflo J
    J Biol Chem; 1982 Oct; 257(20):12170-9. PubMed ID: 6896876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vitamin K and the biosynthesis of prothrombin. 3. Structural comparison of an NH2-terminal fragment from normal and from dicoumarol-induced bovine prothrombin.
    Stenflo J
    J Biol Chem; 1973 Sep; 248(18):6325-32. PubMed ID: 4125867
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.