These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 5033403)

  • 1. Catabolism of pipecolate to glutamate in Pseudomonas putida.
    Perfetti R; Campbell RJ; Titus J; Hartline RA
    J Biol Chem; 1972 Jun; 247(12):4089-95. PubMed ID: 5033403
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism of pipecolic acid in a Pseudomonas species. VI. Precursors of glutamate.
    Hartline RA; Rodwell VW
    Arch Biochem Biophys; 1971 Jan; 142(1):32-9. PubMed ID: 5545486
    [No Abstract]   [Full Text] [Related]  

  • 3. Alpha-ketoglutarate as an intermediate in glutamate metabolism by Peptococcus aerogenes.
    Johnson WM; Westlake DW
    Can J Microbiol; 1972 Jun; 18(6):875-80. PubMed ID: 4338317
    [No Abstract]   [Full Text] [Related]  

  • 4. D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism.
    Chang YF; Adams E
    J Bacteriol; 1974 Feb; 117(2):753-64. PubMed ID: 4359655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of basic amino acids in Pseudomonas putida. Intermediates in L-arginine catabolism.
    Miller DL; Rodwell VW
    J Biol Chem; 1971 Aug; 246(16):5053-8. PubMed ID: 5570437
    [No Abstract]   [Full Text] [Related]  

  • 6. Stereospecific decarboxylation of specifically labeled carboxyl- 14 C aminomalonic acids by L-aspartate -decarboxylase.
    Palekar AG; Tate SS; Meister A
    Biochemistry; 1971 May; 10(11):2180-2. PubMed ID: 5105559
    [No Abstract]   [Full Text] [Related]  

  • 7. The metabolism of D- and L-lysine in the chicken.
    Grove JA; Roghair HG
    Arch Biochem Biophys; 1971 May; 144(1):230-6. PubMed ID: 5117527
    [No Abstract]   [Full Text] [Related]  

  • 8. Metabolism of pipecolic acid in a Pseudomonas species. I. alpha-Aminoadipic and glutamic acids.
    RAO DR; RODWELL VW
    J Biol Chem; 1962 Jul; 237():2232-8. PubMed ID: 14490316
    [No Abstract]   [Full Text] [Related]  

  • 9. Biosynthesis of lysine in Rhodotorula glutinis: role of pipecolic acid.
    Kurtz M; Bhattacharjee JK
    J Gen Microbiol; 1975 Jan; 86(1):103-10. PubMed ID: 1167573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The production of alpha-hydroxyglutaric acid from glutamic acid by cell-free preparations of Peptococcus aerogenes.
    Johnson WM; Westlake DW
    Can J Biochem; 1969 Dec; 47(12):1103-7. PubMed ID: 4312225
    [No Abstract]   [Full Text] [Related]  

  • 11. Preferential uptake of D-alpha-aminoadipate from a racemic mixture by an Alcaligenes denitrificans.
    Wood T; Hartline RA
    Biochim Biophys Acta; 1971; 230(3):446-50. PubMed ID: 5581277
    [No Abstract]   [Full Text] [Related]  

  • 12. Relationship of glutaric acid to the homocitric acid pathway of biosynthesis of lysine in yeast.
    Bhattacharjee JK; Tucci AF
    J Biol Chem; 1969 Mar; 244(6):1417-23. PubMed ID: 5773046
    [No Abstract]   [Full Text] [Related]  

  • 13. Metabolism of pipecolic acid in a Pseudomonas species. V. Pipecolate oxidase and dehydrogenase.
    Baginsky ML; Rodwell VW
    J Bacteriol; 1967 Oct; 94(4):1034-9. PubMed ID: 6051341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of separate catabolic pathways for L- and D-lysine in Pseudomonas putida.
    Chang YF; Adams E
    Biochem Biophys Res Commun; 1971 Nov; 45(3):570-7. PubMed ID: 5128165
    [No Abstract]   [Full Text] [Related]  

  • 15. The metabolism of gamma-aminobutyric acid (GABA) in the lobster nervous system--glutamic decarboxylase.
    Molinoff PB; Kravitz EA
    J Neurochem; 1968 May; 15(5):391-409. PubMed ID: 5648485
    [No Abstract]   [Full Text] [Related]  

  • 16. The conversion of L-lysine to saccharopine and alpha-aminoadipate in mouse.
    Higashino K; Fujioka M; Yamamura Y
    Arch Biochem Biophys; 1971 Feb; 142(2):606-14. PubMed ID: 4396286
    [No Abstract]   [Full Text] [Related]  

  • 17. Methylation of arginine and lysine residues of cerebral proteins.
    Kakimoto Y
    Biochim Biophys Acta; 1971 Jul; 243(1):31-7. PubMed ID: 5001088
    [No Abstract]   [Full Text] [Related]  

  • 18. Metabolism of basic amino acids in Pseudomonas putida. Properties of the inducible lysine transport system.
    Miller DL; Rodwell VW
    J Biol Chem; 1971 Mar; 246(6):1765-71. PubMed ID: 5547703
    [No Abstract]   [Full Text] [Related]  

  • 19. Metabolism of 2-amino-5-hydroxyadipic acid in the rat.
    Lindahl G; Lindstedt G; Lindstedt S
    Arch Biochem Biophys; 1967 Mar; 119(1):347-52. PubMed ID: 6052427
    [No Abstract]   [Full Text] [Related]  

  • 20. Intermediates and enzymes between alpha-ketoarginine and gamma-guanidinobutyrate in the L-arginine catabolic pathway of Pseudomonas putida.
    Vanderbilt AS; Gaby NS; Rodwell VW
    J Biol Chem; 1975 Jul; 250(14):5322-9. PubMed ID: 237915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.