These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 503456)

  • 21. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum.
    Fry B; Gest H; Hayes JM
    FEMS Microbiol Lett; 1985; 27():227-32. PubMed ID: 11540842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large sulfur isotope fractionation does not require disproportionation.
    Sim MS; Bosak T; Ono S
    Science; 2011 Jul; 333(6038):74-7. PubMed ID: 21719675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes.
    Detmers J; Brüchert V; Habicht KS; Kuever J
    Appl Environ Microbiol; 2001 Feb; 67(2):888-94. PubMed ID: 11157259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sulfur isotope's signal of nanopyrites enclosed in 2.7 Ga stromatolitic organic remains reveal microbial sulfate reduction.
    Marin-Carbonne J; Remusat L; Sforna MC; Thomazo C; Cartigny P; Philippot P
    Geobiology; 2018 Mar; 16(2):121-138. PubMed ID: 29380506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isotopic evidence for microbial sulphate reduction in the early Archaean era.
    Shen Y; Buick R; Canfield DE
    Nature; 2001 Mar; 410(6824):77-81. PubMed ID: 11242044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sulfate burial constraints on the Phanerozoic sulfur cycle.
    Halevy I; Peters SE; Fischer WW
    Science; 2012 Jul; 337(6092):331-4. PubMed ID: 22822147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ S-isotope compositions of sulfate and sulfide from the 3.2 Ga Moodies Group, South Africa: A record of oxidative sulfur cycling.
    Nabhan S; Marin-Carbonne J; Mason PRD; Heubeck C
    Geobiology; 2020 Jul; 18(4):426-444. PubMed ID: 32301171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment.
    Wu S; Jeschke C; Dong R; Paschke H; Kuschk P; Knöller K
    Water Res; 2011 Dec; 45(20):6688-98. PubMed ID: 22055121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence.
    Ohmoto H; Kakegawa T; Lowe DR
    Science; 1993 Oct; 262():555-7. PubMed ID: 11539502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple sulfur isotope constraints on microbial sulfate reduction below an Archean seafloor hydrothermal system.
    Aoyama S; Ueno Y
    Geobiology; 2018 Mar; 16(2):107-120. PubMed ID: 29243877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Patterns of sulfur isotope fractionation during microbial sulfate reduction.
    Bradley AS; Leavitt WD; Schmidt M; Knoll AH; Girguis PR; Johnston DT
    Geobiology; 2016 Jan; 14(1):91-101. PubMed ID: 26189479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity.
    Crockford PW; Hayles JA; Bao H; Planavsky NJ; Bekker A; Fralick PW; Halverson GP; Bui TH; Peng Y; Wing BA
    Nature; 2018 Jul; 559(7715):613-616. PubMed ID: 30022163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sulfur cycling and biodegradation in contaminated aquifers: insights from stable isotope investigations.
    Knöller K; Vogt C; Feisthauer S; Weise SM; Weiss H; Richnow HH
    Environ Sci Technol; 2008 Nov; 42(21):7807-12. PubMed ID: 19031864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution.
    Fry B; Ruf W; Gest H; Hayes JM
    Isot Geosci; 1988; 73():205-10. PubMed ID: 11538336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revisiting the dissimilatory sulfate reduction pathway.
    Bradley AS; Leavitt WD; Johnston DT
    Geobiology; 2011 Sep; 9(5):446-57. PubMed ID: 21884365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Benthic iron cycling in a high-oxygen environment: Implications for interpreting the Archean sedimentary iron isotope record.
    McCoy VE; Asael D; Planavsky N
    Geobiology; 2017 Sep; 15(5):619-627. PubMed ID: 28730601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Late Archean biospheric oxygenation and atmospheric evolution.
    Kaufman AJ; Johnston DT; Farquhar J; Masterson AL; Lyons TW; Bates S; Anbar AD; Arnold GL; Garvin J; Buick R
    Science; 2007 Sep; 317(5846):1900-3. PubMed ID: 17901329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aerobic sulfate reduction in microbial mats.
    Canfield DE; Des Marais DJ
    Science; 1991 Mar; 251():1471-3. PubMed ID: 11538266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration.
    Wing BA; Halevy I
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18116-25. PubMed ID: 25362045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.