These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 503554)

  • 1. Periventricular system lesions and stimulation-produced analgesia.
    Rhodes DL
    Pain; 1979 Aug; 7(1):51-63. PubMed ID: 503554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analgesia from rostral brain stem stimulation in the rat.
    Rhodes DL; Liebeskind JC
    Brain Res; 1978 Mar; 143(3):521-32. PubMed ID: 647376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site specificity in the development of tolerance to stimulation-produced analgesia from the periaqueductal gray matter of the rat.
    Morgan MM; Liebeskind JC
    Brain Res; 1987 Nov; 425(2):356-9. PubMed ID: 3427436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. II. Differential characteristics of the analgesia induced by ventral and dorsal PAG stimulation.
    Fardin V; Oliveras JL; Besson JM
    Brain Res; 1984 Jul; 306(1-2):125-39. PubMed ID: 6466968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of the periaqueductal gray matter inhibits nociception at the supraspinal as well as spinal level.
    Morgan MM; Sohn JH; Liebeskind JC
    Brain Res; 1989 Nov; 502(1):61-6. PubMed ID: 2819459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation-produced analgesia (SPA) from brain-stem and diencephalic sites in the rat: relationships between analgesia, aversion, seizures and catalepsy.
    Morgan MJ; Franklin KBJ
    Pain; 1988 Apr; 33(1):109-121. PubMed ID: 3380547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. I. The production of behavioral side effects together with analgesia.
    Fardin V; Oliveras JL; Besson JM
    Brain Res; 1984 Jul; 306(1-2):105-23. PubMed ID: 6540613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-tolerance between two brainstem sites supporting stimulation-produced analgesia.
    Thorn-Gray BE; Johnson MH; Ashbrook RM
    Behav Neural Biol; 1982 Sep; 36(1):69-76. PubMed ID: 6301419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of periaqueductal gray and nucleus raphe magnus on analgesia induced by lappaconitine, N-deacetyllappaconitine and morphine.
    Guo X; Tang XC
    Zhongguo Yao Li Xue Bao; 1990 Mar; 11(2):107-12. PubMed ID: 2275382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opioid antagonists in the periaqueductal gray inhibit morphine and beta-endorphin analgesia elicited from the amygdala of rats.
    Pavlovic ZW; Cooper ML; Bodnar RJ
    Brain Res; 1996 Nov; 741(1-2):13-26. PubMed ID: 9001699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diazepam dissociates the analgesic and aversive effects of periaqueductal gray stimulation in the rat.
    Morgan MM; Depaulis A; Liebeskind JC
    Brain Res; 1987 Oct; 423(1-2):395-8. PubMed ID: 3676817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for opioid and non-opioid forms of stimulation-produced analgesia in the rat.
    Cannon JT; Prieto GJ; Lee A; Liebeskind JC
    Brain Res; 1982 Jul; 243(2):315-21. PubMed ID: 7104742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation-produced analgesia in the mouse: evidence for laterality of opioid mediation.
    Marek P; Yirmiya R; Liebeskind JC
    Brain Res; 1991 Feb; 541(1):154-6. PubMed ID: 2029617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective effects of pirenperone on analgesia produced by morphine or electrical stimulation at sites in the nucleus raphe magnus and periaqueductal gray.
    Paul D; Phillips AG
    Psychopharmacology (Berl); 1986; 88(2):172-6. PubMed ID: 3081929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analgesia produced by microinjection of baclofen and morphine at brain stem sites.
    Levy RA; Proudfit HK
    Eur J Pharmacol; 1979 Jul; 57(1):43-55. PubMed ID: 477741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ability of periaqueductal gray subdivisions and adjacent loci to elicit analgesia and ability of naloxone to reverse analgesia.
    Thorn BE; Applegate L; Johnson SW
    Behav Neurosci; 1989 Dec; 103(6):1335-9. PubMed ID: 2558678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relative efficacy of monopolar vs. bipolar electrodes in stimulation-produced analgesia.
    Thorn BE; Applegate L; Jones K
    Exp Brain Res; 1990; 79(2):266-70. PubMed ID: 2323373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between analgesia and cardiovascular changes induced by electrical stimulation of the mesencephalic periaqueductal gray matter in the rat.
    Depaulis A; Pechnick RN; Liebeskind JC
    Brain Res; 1988 Jun; 451(1-2):326-32. PubMed ID: 3251592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The study of the central grey matter in mechanisms of different kinds of analgesia: effects of lesions.
    Bragin EO; Vasilenko GF; Durinjan RA
    Pain; 1983 May; 16(1):33-40. PubMed ID: 6866540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of the central gray substance in activating the analgesic systems of the rat bran under stress].
    Bragin EO; Vasilenko GF; Durinian RA
    Biull Eksp Biol Med; 1982 May; 93(5):22-4. PubMed ID: 7093499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.