BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 5035696)

  • 1. Specificity of creatine kinase for guanidino substrates. Kinetic and proton nuclear magnetic relaxation rate studies.
    McLaughlin AC; Cohn M; Kenyon GL
    J Biol Chem; 1972 Jul; 247(13):4382-8. PubMed ID: 5035696
    [No Abstract]   [Full Text] [Related]  

  • 2. The binding of manganese-nucleoside diphosphates to creatine kinase as determined by proton relaxation rate measurements.
    O'Sullivan WJ; Reed GH; Marsden KH; Gough GR; Lee CS
    J Biol Chem; 1972 Dec; 247(24):7839-43. PubMed ID: 4640926
    [No Abstract]   [Full Text] [Related]  

  • 3. Structural changes induced by substrates and anions at the active site of creatine kinase. Electron paramagnetic resonance and nuclear magnetic relaxation rate studies of the manganous complexes.
    Reed GH; Cohn M
    J Biol Chem; 1972 May; 247(10):3073-81. PubMed ID: 4337505
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of the lysyl residue at the active site of creatine kinase. Nuclear Overhauser effect studies.
    James TL; Cohn M
    J Biol Chem; 1974 Apr; 249(8):2599-604. PubMed ID: 4856652
    [No Abstract]   [Full Text] [Related]  

  • 5. Magnetic resonance study of the three-dimensional structure of creatine kinase-substrate complexes. Implications for substrate specificity and catalytic mechanism.
    McLaughlin AC; Leigh JS; Cohn M
    J Biol Chem; 1976 May; 251(9):2777-87. PubMed ID: 177421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of manganous ion, substrates, and anions with arginine kinase. Magnetic relaxation rate studies of water protons and kinetic anion effects.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5733-40. PubMed ID: 4370118
    [No Abstract]   [Full Text] [Related]  

  • 7. Relaxation spectra of adenosine triphosphate-creatine phosphotransferase.
    Hammes GG; Hurst JK
    Biochemistry; 1969 Mar; 8(3):1083-94. PubMed ID: 5813732
    [No Abstract]   [Full Text] [Related]  

  • 8. Electron paramagnetic resonance and proton relaxation rate studies of spin-labeled creatine kinase and its complexes.
    Taylor JS; McLaughlin A; Cohn M
    J Biol Chem; 1971 Oct; 246(19):6029-36. PubMed ID: 4330064
    [No Abstract]   [Full Text] [Related]  

  • 9. The reaction of creatine kinase with dithiobisnitrobenzoic acid. Formation of derivatives of the enzyme.
    O'Sullivan WJ
    Int J Protein Res; 1971; 3(3):139-47. PubMed ID: 4257491
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies of manganous nucleotide complexes with uridine diphosphate-glucose pyrophosphorylase, formyltetrahydrofolate synthetase, and creatine kinase. Mechanism of water proton magnetic relaxation from frequency dependent measurements.
    Reed GH; Diefenbach H; Cohn M
    J Biol Chem; 1972 May; 247(10):3066-72. PubMed ID: 5027742
    [No Abstract]   [Full Text] [Related]  

  • 11. Magnetic resonance and catalytic studies of pyruvate kinase with essential sulfhydryl or lysyl epsilon-amino groups chemically modified.
    Flashner M; Tamir I; Mildvan AS; Meloche HP; Coon MJ
    J Biol Chem; 1973 May; 248(10):3419-25. PubMed ID: 4702870
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of the active site structures of arginine kinase-substrate complexes. Water proton magnetic relaxation rates and electron paramagnetic resonance spectra of manganous-enzyme complexes with substrates and of a transition state analog.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5741-8. PubMed ID: 4369851
    [No Abstract]   [Full Text] [Related]  

  • 13. Magnetic resonance studies of manganese (II) binding sites of pyruvate kinase. Temperature effects and frequency dependence of proton relaxation rates of water.
    Reuben J; Cohn M
    J Biol Chem; 1970 Dec; 245(24):6539-46. PubMed ID: 4320606
    [No Abstract]   [Full Text] [Related]  

  • 14. Binding of adenosine 5'-diphosphate to creatine kinase. An investigation using intermolecular nuclear Overhauser effect measurements.
    James TL
    Biochemistry; 1976 Oct; 15(21):4724-30. PubMed ID: 974086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural aspects of manganese-pyruvate kinase substrate and inhibitor complexes deduced from proton magnetic relaxation rates of pyruvate and a phosphoenolpyruvate analog.
    James TL; Cohn M
    J Biol Chem; 1974 Jun; 249(11):3519-26. PubMed ID: 4831226
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural studies of transition state analog complexes of creatine kinase.
    Reed GH; McLaughlin AC
    Ann N Y Acad Sci; 1973 Dec; 222():118-29. PubMed ID: 4361852
    [No Abstract]   [Full Text] [Related]  

  • 17. The interaction of 8-anilino-1-naphthalenesulfonate with creatine kinase. Evidence for cooperativitiy of nucleotide binding.
    McLaughlin AC
    J Biol Chem; 1974 Mar; 249(5):1445-52. PubMed ID: 4817755
    [No Abstract]   [Full Text] [Related]  

  • 18. Heterogeneity of rabbit muscle creatine kinase and limited proteolysis by proteinase K.
    Williamson J; Greene J; Chérif S; Milner-White EJ
    Biochem J; 1977 Dec; 167(3):731-7. PubMed ID: 603634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance studies of specificity in binding and catalysis of phosphotransferases.
    Cohn M
    Ciba Found Symp; 1975; (31):87-104. PubMed ID: 168046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and magnetic resonance studies of the interaction of oxalate with pyruvate kinase.
    Reed GH; Morgan SD
    Biochemistry; 1974 Aug; 13(17):3537-41. PubMed ID: 4367426
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.