These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 5036166)

  • 1. Magnetic resonance studies of protein-small molecule interactions. Binding of N-trifluoroacetyl-D-(and L-)-p-fluorophenylalanine to -chymotrypsin.
    Gammon KL; Smallcombe SH; Richards JH
    J Am Chem Soc; 1972 Jun; 94(13):4573-80. PubMed ID: 5036166
    [No Abstract]   [Full Text] [Related]  

  • 2. Magnetic resonance studies of protein-small molecule interactions. Dynamics of binding between N-trifluoroacetyl-D-tryptophan and -chymotrypsin.
    Smallcombe SH; Ault B; Richards JH
    J Am Chem Soc; 1972 Jun; 94(13):4585-90. PubMed ID: 5036168
    [No Abstract]   [Full Text] [Related]  

  • 3. Magnetic resonance studies of protein-small molecule interactions. Binding of N-trifluoroacetyl-D-(and L-)-tryptophan to -chymotrypsin.
    Smallcombe SH; Gammon KL; Richards JH
    J Am Chem Soc; 1972 Jun; 94(13):4581-4. PubMed ID: 5036167
    [No Abstract]   [Full Text] [Related]  

  • 4. Enzyme-inhibitor interactions studied via fluorine magnetic resonance. II. Model for the trifluoroacetylphenylalanine-alpha-chymotrypsin interaction.
    Zeffren E
    Arch Biochem Biophys; 1970 Mar; 137(1):291-3. PubMed ID: 5435065
    [No Abstract]   [Full Text] [Related]  

  • 5. A NMR study of the interaction of N-trifluoroacetyl-D-phenylalanine with alpha-chymotrypsin.
    Sykes BD
    Biochem Biophys Res Commun; 1968 Dec; 33(5):727-32. PubMed ID: 5723335
    [No Abstract]   [Full Text] [Related]  

  • 6. Fluorine nuclear magnetic resonance studies of trifluoroacetyl-insulin derivatives. Effects of pH on conformation and aggregation.
    Paselk RA; Levy D
    Biochemistry; 1974 Jul; 13(16):3340-6. PubMed ID: 4841066
    [No Abstract]   [Full Text] [Related]  

  • 7. An application of transient nuclear magnetic resonance methods to the measurement of biological exchange rates. The interaction of trifluoroacetyl-D-phenylalanine with the chymotrypsins.
    Sykes BD
    J Am Chem Soc; 1969 Feb; 91(4):949-55. PubMed ID: 5778277
    [No Abstract]   [Full Text] [Related]  

  • 8. A proton-magnetic-resonance study of N-trifluoroacetyl-L-alanyl-L-phenylalaninal binding to alpha-chymotrypsin.
    Wyeth P; Sharma RP; Akhtar M
    Eur J Biochem; 1980 Apr; 105(3):581-5. PubMed ID: 6245886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-inhibitor interactions studies via fluorine nuclear magnetic resonance. I. The interaction of alpha-chymotrypsin with DL-N-trifluoroacetylphenylalanie.
    Zeffren E; Reavill RE
    Biochem Biophys Res Commun; 1968 Jul; 32(1):73-80. PubMed ID: 5672545
    [No Abstract]   [Full Text] [Related]  

  • 10. Structure and dynamics of alpha-chymotrypsin-N-trifluoroacetyl-4-fluorophenylalanine complexes.
    Jacobson AR; Gerig JT
    J Biomol NMR; 1991 Jul; 1(2):131-44. PubMed ID: 1841692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton and fluorine nuclear magnetic resonance spectroscopic observation of hemiacetal formation between N-acyl-p-fluorophenylalaninals and alpha-chymotrypsin.
    Gorenstein DG; Shah DO
    Biochemistry; 1982 Sep; 21(19):4679-86. PubMed ID: 7138821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic catalytic activity of the zymogen, bovine procarboxypeptidase A. A kinetic study using fluorine analogues.
    Canonici P; Behnke WD
    Biochem Biophys Res Commun; 1974 Feb; 56(3):575-9. PubMed ID: 4857054
    [No Abstract]   [Full Text] [Related]  

  • 13. Inhibition of alpha-chymotrypsin by hydroxymethyl analogues of D-and L-N-acetylphenylalanine and N-acetyltryptophan of potential affinity labeling value.
    Jones JB; Sneddon DW; Lewis AJ
    Biochim Biophys Acta; 1974 Mar; 341(1):184-90. PubMed ID: 4828842
    [No Abstract]   [Full Text] [Related]  

  • 14. Preparation of several trifluoroacetyl insulin derivatives.
    Paselk RA; Levy D
    Biochim Biophys Acta; 1974 Aug; 359(2):215-21. PubMed ID: 4859448
    [No Abstract]   [Full Text] [Related]  

  • 15. Nuclear magnetic resonance studies of macromolecules with fluorine nuclei as probes.
    Dwek RA
    Ciba Found Symp; 1971; 2():239-79. PubMed ID: 5212153
    [No Abstract]   [Full Text] [Related]  

  • 16. Fluorine nuclear magnetic resonance studies of trifluoroacetylinsulin derivatives. Effects of salts and denaturants.
    Paselk RA; Levy D
    Biochim Biophys Acta; 1976 Aug; 439(2):479-91. PubMed ID: 8120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution NMR study of the charge relay system in chymotrypsin.
    Robillard G; Shulman RG
    Ann N Y Acad Sci; 1973 Dec; 222():220-5. PubMed ID: 4522429
    [No Abstract]   [Full Text] [Related]  

  • 18. Evidence for hemiacetal formation between N-acyl-L-phenylalaninals and alpha-chymotrypsin by cross-saturation nuclear magnetic resonance spectroscopy.
    Chen R; Gorenstein DG; Kennedy WP; Lowe G; Nurse D; Schultz RM
    Biochemistry; 1979 Mar; 18(5):921-6. PubMed ID: 420824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Adjustment of the substrate as rate-determining step in the enzymatic cleavage of esters and amides by chymotrypsin A].
    Fink G; Patat F
    Hoppe Seylers Z Physiol Chem; 1969 Dec; 350(12):1501-12. PubMed ID: 5363652
    [No Abstract]   [Full Text] [Related]  

  • 20. A 19 F nuclear magnetic resonance study of the binding of trifluoroacetylglucosamine oligomers to lysozyme.
    Millett F; Raftery MA
    Biochemistry; 1972 Apr; 11(9):1639-43. PubMed ID: 5063710
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.