These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Analyses of some biomechanical structures and flows by computer-based finite element method. Ghista DN; Kobayashi AS; Davids N Comput Biol Med; 1975 Jun; 5(1-2):119-161. PubMed ID: 1157460 [No Abstract] [Full Text] [Related]
5. Viscoelastic wave propagation and rheologic properties of skeletal muscle. Truong XT Am J Physiol; 1974 Feb; 226(2):256-64. PubMed ID: 4544064 [No Abstract] [Full Text] [Related]
6. Shear stresses in fluid flow through curved tubes and their applications in extracorporeal circuit design. Patil MK Med Biol Eng Comput; 1986 Jan; 24(1):100-4. PubMed ID: 3959604 [No Abstract] [Full Text] [Related]
7. Thixotropy in human skin. Finlay JB J Biomech; 1978; 11(6-7):333-42. PubMed ID: 711782 [No Abstract] [Full Text] [Related]
8. Measurement of the rheological properties of biological fluids. 3. Viscoelastic properties of blood serum. Barnett B; Meilman E; Han CD Biorheology; 1972 Dec; 9(4):265-71. PubMed ID: 4665826 [No Abstract] [Full Text] [Related]
9. [Modern poro-elastic biomechanical model of bone tissue. I. Biomechanical function of fluids in bone]. Rogala P; Uklejewski R; Stryła W Chir Narzadow Ruchu Ortop Pol; 2002; 67(3):309-16. PubMed ID: 12238403 [TBL] [Abstract][Full Text] [Related]
10. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Kabinejadian F; Ghista DN Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834 [TBL] [Abstract][Full Text] [Related]
11. Laser-Doppler measurements of velocities just downstream of a collapsible tube during flow-induced oscillations. Bertram CD; Diaz de Tuesta G; Nugent AH J Biomech Eng; 2001 Oct; 123(5):493-9. PubMed ID: 11601735 [TBL] [Abstract][Full Text] [Related]
12. [Criteria of similarity for mechanical models of the circulation in the example given of the anisotropic, elastic tube model with interior wall friction]. Rödenbeck M Z Biol; 1967 Oct; 115(6):393-407. PubMed ID: 5601880 [No Abstract] [Full Text] [Related]
14. A study of the bifurcation behaviour of a model of flow through a collapsible tube. Armitstead JP; Bertram CD; Jensen OE Bull Math Biol; 1996 Jul; 58(4):611-41. PubMed ID: 8756267 [TBL] [Abstract][Full Text] [Related]
15. A new model of the vocal cords based on a collapsible tube analogy. Conrad WA Med Res Eng; 1980; 13(2):7-10. PubMed ID: 7401986 [TBL] [Abstract][Full Text] [Related]
16. Onset of airflow limitation in a collapsible tube model: impact of surrounding pressure, longitudinal strain, and wall folding geometry. Amatoury J; Kairaitis K; Wheatley JR; Bilston LE; Amis TC J Appl Physiol (1985); 2010 Nov; 109(5):1467-75. PubMed ID: 20829496 [TBL] [Abstract][Full Text] [Related]
17. Steady fluid flow through veins and collapsible tubes. Griffiths DJ Med Biol Eng; 1971 Nov; 9(6):597-602. PubMed ID: 5158811 [No Abstract] [Full Text] [Related]
18. Mechanics of biological networks: from the cell cytoskeleton to connective tissue. Pritchard RH; Huang YY; Terentjev EM Soft Matter; 2014 Mar; 10(12):1864-84. PubMed ID: 24652375 [TBL] [Abstract][Full Text] [Related]
19. Single cell mechanics: stress stiffening and kinematic hardening. Fernández P; Ott A Phys Rev Lett; 2008 Jun; 100(23):238102. PubMed ID: 18643547 [TBL] [Abstract][Full Text] [Related]
20. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity. Lázaro GR; Hernández-Machado A; Pagonabarraga I Soft Matter; 2014 Oct; 10(37):7195-206. PubMed ID: 25105872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]