These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 5038667)

  • 1. An NMR method for characterizing conformation changes in proteins.
    Millett F; Raftery MA
    Biochem Biophys Res Commun; 1972 May; 47(3):625-32. PubMed ID: 5038667
    [No Abstract]   [Full Text] [Related]  

  • 2. Spin-label-induced nuclear relaxation. Distances between bound saccharides, histidine-15, and tryptophan-123 on lysozyme in solution.
    Wien RW; Morrisett JD; McConnell HM
    Biochemistry; 1972 Sep; 11(20):3707-16. PubMed ID: 4342024
    [No Abstract]   [Full Text] [Related]  

  • 3. A 19 F nuclear magnetic resonance study of the binding of trifluoroacetylglucosamine oligomers to lysozyme.
    Millett F; Raftery MA
    Biochemistry; 1972 Apr; 11(9):1639-43. PubMed ID: 5063710
    [No Abstract]   [Full Text] [Related]  

  • 4. Use of 19 F-nuclear magnetic resonance spectroscopy for detection of protein conformation changes: application to lysozyme, ribonuclease and hemoglobin.
    Raftery MA; Huestis WH; Millett F
    Cold Spring Harb Symp Quant Biol; 1972; 36():541-50. PubMed ID: 4508166
    [No Abstract]   [Full Text] [Related]  

  • 5. Nuclear magnetic resonance and ultraviolet difference spectral studies of the binding properties of turkey egg white lysozyme. Consequences of the replacement of Asp 101 by glycine.
    Arnheim N; Millett F; Raftery MA
    Arch Biochem Biophys; 1974 Nov; 165(1):281-7. PubMed ID: 4474836
    [No Abstract]   [Full Text] [Related]  

  • 6. The use of a computer-controlled display system in the study of molecular conformations.
    Barry CD; North AC
    Cold Spring Harb Symp Quant Biol; 1972; 36():577-84. PubMed ID: 4508170
    [No Abstract]   [Full Text] [Related]  

  • 7. Ionization behavior of the cleft carboxyls in lysozyme-substrate complexes.
    Parsons SM; Raftery MA
    Biochemistry; 1972 Apr; 11(9):1633-8. PubMed ID: 5028107
    [No Abstract]   [Full Text] [Related]  

  • 8. Nuclear magnetic resonance studies of macromolecules with fluorine nuclei as probes.
    Dwek RA
    Ciba Found Symp; 1971; 2():239-79. PubMed ID: 5212153
    [No Abstract]   [Full Text] [Related]  

  • 9. A nuclear magnetic resonance study of lysozyme inhibition. Effects of dimerization and pH on saccharide binding.
    Studebaker JF; Sykes BD; Wien R
    J Am Chem Soc; 1971 Sep; 93(18):4579-85. PubMed ID: 5131158
    [No Abstract]   [Full Text] [Related]  

  • 10. The role of distortion in the lysozyme mechanism.
    Sykes BD; Patt SL; Dolphin D
    Cold Spring Harb Symp Quant Biol; 1972; 36():29-33. PubMed ID: 4508143
    [No Abstract]   [Full Text] [Related]  

  • 11. Interpretation of protein titration curves. Application to lysozyme.
    Tanford C; Roxby R
    Biochemistry; 1972 May; 11(11):2192-8. PubMed ID: 5027621
    [No Abstract]   [Full Text] [Related]  

  • 12. The active center of aspartate transaminase. A fluorine-19 nuclear magnetic resonance study of the anion binding site.
    Cheng S; Martinez-Carrion M
    J Biol Chem; 1972 Oct; 247(20):6597-602. PubMed ID: 5076771
    [No Abstract]   [Full Text] [Related]  

  • 13. Spin-lattice relaxation times of imidazole protons and their relevance to NMR studies of proteins.
    Wasylishen RE; Cohen JS
    Nature; 1974 Jun; 249(460):847-50. PubMed ID: 4209741
    [No Abstract]   [Full Text] [Related]  

  • 14. The effect of gadolinium ion on the binding of inhibitors and substrates to lysozyme.
    Secemski II; Lienhard GE
    J Biol Chem; 1974 May; 249(9):2932-8. PubMed ID: 4857195
    [No Abstract]   [Full Text] [Related]  

  • 15. The mechanism of water-proton relaxation in enzyme paramagnetic-ion complexes. 1. The Gd(3)-lysozyme complex.
    Jones R; Dwek RA
    Eur J Biochem; 1974 Sep; 47(2):271-83. PubMed ID: 4370484
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural information from NMR secondary chemical shifts of peptide alpha C-H protons in proteins.
    Dalgarno DC; Levine BA; Williams RJ
    Biosci Rep; 1983 May; 3(5):443-52. PubMed ID: 6882888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorotyrosine alkaline phosphatase. 19F nuclear magnetic resonance relaxation times and molecular motion of the individual fluorotyrosines.
    Hull WE; Sykes BD
    Biochemistry; 1974 Aug; 13(17):3431-7. PubMed ID: 4602295
    [No Abstract]   [Full Text] [Related]  

  • 18. A hydrogen-exchange study of lysozyme conformation changes induced by inhibitor binding.
    Wickett RR; Ide GJ; Rosenberg A
    Biochemistry; 1974 Jul; 13(16):3273-7. PubMed ID: 4841065
    [No Abstract]   [Full Text] [Related]  

  • 19. Ionization constants of Glu 35 and Asp 52 in hen, turkey, and human lysozymes.
    Kuramitsu S; Ikeda K; Hamaguchi K; Fujio H; Amano T
    J Biochem; 1974 Oct; 76(4):671-83. PubMed ID: 4436281
    [No Abstract]   [Full Text] [Related]  

  • 20. Developments in the characterisation of the catalytic triad of alpha-chymotrypsin: Effect of the protonation state of Asp102 on the 1H NMR signals of His57.
    Bruylants G; Redfield C; Bartik K
    Chembiochem; 2007 Jan; 8(1):51-4. PubMed ID: 17121406
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.