These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 5039842)

  • 21. End products of glutamine oxidation in MC-29 virus-induced chicken hepatoma mitochondria.
    Matsuno T
    Biochem Med Metab Biol; 1989 Oct; 42(2):125-31. PubMed ID: 2571353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-specific development of malate-aspartate shuttle in the liver and kidney of mice.
    Sharma R; Dey S; Verma R
    Biochem Int; 1992 Sep; 27(6):1059-66. PubMed ID: 1445374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional significance of the malate-aspartate shuttle for the oxidation of cytoplasmic reducing equivalents in rat heart.
    Safer H; Williamson JR
    Recent Adv Stud Cardiac Struct Metab; 1972; 1():34-43. PubMed ID: 4377825
    [No Abstract]   [Full Text] [Related]  

  • 24. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1998 Aug; 30(8):1571-9. PubMed ID: 9737943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The capacity of the malate-aspartate shuttle differs between periportal and perivenous hepatocytes from rats.
    Shiota M; Hiramatsu M; Fujimoto Y; Moriyama M; Kimura K; Ohta M; Sugano T
    Arch Biochem Biophys; 1994 Feb; 308(2):349-56. PubMed ID: 8109964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol.
    Williamson JR; Safer B; LaNoue KF; Smith CM; Walajtys E
    Symp Soc Exp Biol; 1973; 27():241-81. PubMed ID: 4358367
    [No Abstract]   [Full Text] [Related]  

  • 27. Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle. A study involving fumarase, malate dehydrogenase, citrate synthesis and aspartate aminotransferase.
    Beeckmans S; Kanarek L
    Eur J Biochem; 1981 Jul; 117(3):527-35. PubMed ID: 7285903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of the malate-aspartate shuttle on the metabolic response to myocardial ischemia.
    Lu M; Zhou L; Stanley WC; Cabrera ME; Saidel GM; Yu X
    J Theor Biol; 2008 Sep; 254(2):466-75. PubMed ID: 18603266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of glycolysis and respiration in substrate-depleted Ehrlich ascites tumor cells.
    Ibsen KH; Schiller KW
    Arch Biochem Biophys; 1971 Mar; 143(1):187-203. PubMed ID: 4327236
    [No Abstract]   [Full Text] [Related]  

  • 30. Evidence for mitochondrial and cytoplasmic N-acetylaspartate synthesis in SH-SY5Y neuroblastoma cells.
    Arun P; Moffett JR; Namboodiri AM
    Neurochem Int; 2009 Sep; 55(4):219-25. PubMed ID: 19524112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport of anionic substrates and glutamate metabolism in mitochondria from ascites tumor cells.
    Eboli ML; Paradies G; Papa S
    Cancer Res; 1976 Sep; 36(9 pt.1):3119-25. PubMed ID: 975077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exercise increases mitochondrial glutamate oxidation in the mouse cerebral cortex.
    Herbst EA; Holloway GP
    Appl Physiol Nutr Metab; 2016 Jul; 41(7):799-801. PubMed ID: 27184881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of metabolism of aspartate and inosine and energy state of malignant cells.
    Kovacević Z; Popović J; Brkljac O; Lelas S
    Biochem J; 1987 Oct; 247(1):47-51. PubMed ID: 3689353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The malate-aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway.
    Borst P
    IUBMB Life; 2020 Nov; 72(11):2241-2259. PubMed ID: 32916028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidation of cytosolic NADH by the malate-aspartate shuttle in HuH13 human hepatoma cells.
    Matsuno T
    Int J Biochem; 1992 Feb; 24(2):313-5. PubMed ID: 1310290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The operation of the malate-aspartate shuttle in the reoxidation of glycolytic NADH in slices of fetal rat liver.
    Dani A; Bartoli GM; Galeotti T
    Biochim Biophys Acta; 1977 Dec; 462(3):781-4. PubMed ID: 202312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ontogeny of malate-aspartate shuttle capacity and gene expression in cardiac mitochondria.
    Scholz TD; Koppenhafer SL; tenEyck CJ; Schutte BC
    Am J Physiol; 1998 Mar; 274(3):C780-8. PubMed ID: 9530110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gluconeogenesis in the kidney cortex. Effects of D-malate and amino-oxyacetate.
    Rognstad R; Katz J
    Biochem J; 1970 Feb; 116(3):483-91. PubMed ID: 5435692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle.
    Bremer J; Davis EJ
    Biochim Biophys Acta; 1975 Mar; 376(3):387-97. PubMed ID: 164904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools.
    McKenna MC; Waagepetersen HS; Schousboe A; Sonnewald U
    Biochem Pharmacol; 2006 Feb; 71(4):399-407. PubMed ID: 16368075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.