These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 5039847)

  • 1. Age-related changes in the structural proteins of human lens.
    Satoh K
    Exp Eye Res; 1972 Jul; 14(1):53-7. PubMed ID: 5039847
    [No Abstract]   [Full Text] [Related]  

  • 2. [Aging effects on low molecular weight proteins of the normal human lens, especially gamma crystallins (author's transl)].
    Kabasawa I; Kabasawa M; Sakaue E
    Nippon Ganka Gakkai Zasshi; 1981; 85(7):789-92. PubMed ID: 7304351
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of aging on the water-soluble and water-insoluble protein pattern in normal human lens.
    Ringens PJ; Hoenders HJ; Bloemendal H
    Exp Eye Res; 1982 Feb; 34(2):201-7. PubMed ID: 7060647
    [No Abstract]   [Full Text] [Related]  

  • 4. [Aging effects of soluble proteins and high molecular weight protein aggregates of human normal lenses (author's transl)].
    Kabasawa I; Kabasawa M; Yoshida H; Sanada Y; Yokota T; Sakaue E
    Nippon Ganka Gakkai Zasshi; 1982; 86(4):464-7. PubMed ID: 7113833
    [No Abstract]   [Full Text] [Related]  

  • 5. Normal human lens - the distribution of protein.
    Fagerholm PP; Philipson BT; Lindström B
    Exp Eye Res; 1981 Dec; 33(6):615-20. PubMed ID: 7318958
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on the structural proteins of the human lens.
    Clark R; Zigman S; Lerman S
    Exp Eye Res; 1969 Apr; 8(2):172-82. PubMed ID: 5786867
    [No Abstract]   [Full Text] [Related]  

  • 7. Guidelines for the classification of lenses and the characterization of lens proteins. Notes from the EURAGE workshop in Louvain-La-Neuve, Belgium.
    Rink H; Bours J; Hoenders HJ
    Ophthalmic Res; 1982; 14(4):284-91. PubMed ID: 7133623
    [No Abstract]   [Full Text] [Related]  

  • 8. The concentration and localization of heavy molecular weight aggregates in aging normal and cataractous human lenses.
    Jedziniak JA; Kinoshita JH; Yates EM; Benedek GB
    Exp Eye Res; 1975 Apr; 20(4):367-9. PubMed ID: 1126401
    [No Abstract]   [Full Text] [Related]  

  • 9. Protein distribution and characterization in the prenatal and postnatal human lens.
    Ringens PJ; Hoenders HJ; Bloemendal H
    Exp Eye Res; 1982 May; 34(5):815-23. PubMed ID: 7084342
    [No Abstract]   [Full Text] [Related]  

  • 10. Quantitative verification of the existence of high molecular weight protein aggregates in the intact normal human lens by light-scattering spectroscopy.
    Jedziniak JA; Nicoli DF; Baram H; Benedek GB
    Invest Ophthalmol Vis Sci; 1978 Jan; 17(1):51-7. PubMed ID: 621125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The state of sulfhydryl groups in normal and cataractous human lens proteins. I. Nuclear region.
    Anderson EI; Spector A
    Exp Eye Res; 1978 Apr; 26(4):407-17. PubMed ID: 639888
    [No Abstract]   [Full Text] [Related]  

  • 12. Stability of normal and aging lens gamma crystallins.
    Mandal K; Lerman S
    Ophthalmic Res; 1993; 25(5):295-301. PubMed ID: 8259262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human insoluble lens protein. I. Separation and partial characterization of polypeptides.
    Roy D; Spector A
    Exp Eye Res; 1978 Apr; 26(4):429-43. PubMed ID: 639890
    [No Abstract]   [Full Text] [Related]  

  • 14. The molecular distribution, weight determination and concentration variation of the total water soluble proteins of the human lens.
    Jedziniak JA; Baram H; Chylack LT
    Exp Eye Res; 1978 Apr; 26(4):377-88. PubMed ID: 639886
    [No Abstract]   [Full Text] [Related]  

  • 15. The origin of urea-insoluble protein isolated from rat lens.
    Harding JJ
    Exp Eye Res; 1972 Nov; 14(3):289-90. PubMed ID: 4640875
    [No Abstract]   [Full Text] [Related]  

  • 16. To the question of water and urea-insoluble residue of the lens.
    Balazs EA
    Exp Eye Res; 1972 Nov; 14(3):291. PubMed ID: 4640876
    [No Abstract]   [Full Text] [Related]  

  • 17. [Aging of the human lens and the mechanisms of the senile cataract formation--about structural lens crystallin].
    Yamamoto K; Fujiwara H; Nishikiori J; Ueno S; Nishikiori T; Shinji K; Yamamoto K; Tsuda K; Kurimoto R; Goto S; Kono M; Hanafusa M; Nakata K; Ohe S; Shin T
    Nippon Ganka Gakkai Zasshi; 1982; 86(11):1859-92. PubMed ID: 7168399
    [No Abstract]   [Full Text] [Related]  

  • 18. [Differences in the four low molecular weight proteins and in the water content from the various types of human cataractous lenses (author's transl)].
    Kodama T; Kabasawa I; Sakaue E
    Nippon Ganka Gakkai Zasshi; 1982; 86(5):531-4. PubMed ID: 7113841
    [No Abstract]   [Full Text] [Related]  

  • 19. Quantitation of membrane-associated crystallins from aging and cataractous human lenses.
    Takehana M; Takemoto L
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitation of C-terminal modification of alpha-A crystallin during aging of the human lens.
    Takemoto L
    Exp Eye Res; 1995 Jun; 60(6):721-4. PubMed ID: 7641854
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.