These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 5040646)

  • 21. The metabolism of D- and L-lysine in the chicken.
    Grove JA; Roghair HG
    Arch Biochem Biophys; 1971 May; 144(1):230-6. PubMed ID: 5117527
    [No Abstract]   [Full Text] [Related]  

  • 22. Metabolism of the ketoaldehyde 2-keto-3-deoxyglucose.
    Jellum E
    Biochim Biophys Acta; 1968 Oct; 165(3):357-63. PubMed ID: 4391087
    [No Abstract]   [Full Text] [Related]  

  • 23. Oxidation of alpha-keto acids.
    Reed LJ
    J Vitaminol (Kyoto); 1968 Mar; 14():Suppl:77-85. PubMed ID: 4877191
    [No Abstract]   [Full Text] [Related]  

  • 24. Studies on Escherichia coli pyruvate dehydrogenase complex. I. Effect of bromopyruvate on the catalytic activities of the complex.
    Maldonado ME; Oh KJ; Frey PA
    J Biol Chem; 1972 May; 247(9):2711-6. PubMed ID: 4554359
    [No Abstract]   [Full Text] [Related]  

  • 25. STUDIES ON MECHANISM OF GLUCONEOGENESIS IN DIABETES.
    WAGLE SR
    Biochim Biophys Acta; 1965 Jan; 97():142-3. PubMed ID: 14284299
    [No Abstract]   [Full Text] [Related]  

  • 26. Interaction between oxidative decarboxylation of branched chain alpha-keto acids and oxidative phosphorylation in rat liver mitochondria.
    Schweiger H; Brand K
    Biochem Biophys Res Commun; 1982 May; 106(1):217-22. PubMed ID: 7103981
    [No Abstract]   [Full Text] [Related]  

  • 27. Effects of conditions favoring enzyme phosphorylation and dephosphorylation on the activity of the alpha-keto acid dehydrogenases, with particular reference to the branched-chain alpha-keto acid dehydrogenase activities.
    Gubler CJ; Malquist RL
    Biochem Biophys Res Commun; 1979 Feb; 86(3):855-61. PubMed ID: 426825
    [No Abstract]   [Full Text] [Related]  

  • 28. The effect of acylcarnitines on the oxidation of branched chain alpha-keto acids in mitochondria.
    Bremer J; Davis EJ
    Biochim Biophys Acta; 1978 Mar; 528(3):269-75. PubMed ID: 638156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition by citrate of pyruvate dehydrogenase in rat liver mitochondria.
    Silbert CK; Martin DB
    Biochem Biophys Res Commun; 1968 Jun; 31(5):818-24. PubMed ID: 4298993
    [No Abstract]   [Full Text] [Related]  

  • 30. Alpha-keto acid dehydrogenase complexes. XI. Comparative studies of regulatory properties of the pyruvate dehydrogenase complexes from kidney, heart, and liver mitochondria.
    Linn TC; Pettit FH; Hucho F; Reed LJ
    Proc Natl Acad Sci U S A; 1969 Sep; 64(1):227-34. PubMed ID: 4312751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of protein and fatty acids on the oxidation of succinate and alpha-oxoglutarate by pea-root mitochondria.
    STICKLAND RG
    Biochem J; 1961 Nov; 81(2):286-91. PubMed ID: 13917201
    [No Abstract]   [Full Text] [Related]  

  • 32. Inhibition of gluconeogenesis and alpha-keto oxidation by 5-methoxyindole-2-carboxylic acid.
    Bauman N; Hill CJ
    Biochemistry; 1968 Apr; 7(4):1322-7. PubMed ID: 4878041
    [No Abstract]   [Full Text] [Related]  

  • 33. [The effect of isoniazid on glucide metabolism. III. The relation between the pyruvic acid and alpha-ketoglutaric acid concentrations in the rat liver and the level of isoniazid administration. The influence of the age of the experimental animal on the isoniazid effect].
    KRULIK R
    Beitr Klin Tuberk Spezif Tuberkuloseforsch; 1962; 125():158-62. PubMed ID: 14459932
    [No Abstract]   [Full Text] [Related]  

  • 34. ACYL COENZYME A AS AN INTERMEDIATE IN THE MITOCHONDRIAL ACYLATION OF CARNITINE BY ALPHA-KETO ACIDS.
    NORUM KR; BREMER J
    Biochim Biophys Acta; 1963 Oct; 78():77-84. PubMed ID: 14098186
    [No Abstract]   [Full Text] [Related]  

  • 35. [On the metabolism of glucosamine. I. Extraformation of glutamic acid in the rat cerebral cortex, in the presence of D-glucosamine, D-glucosaminic acid and alpha-ketoglutaric acid].
    CACIOPPO F; PANDOLFO L
    Boll Soc Ital Biol Sper; 1961 Sep; 37():835-6. PubMed ID: 13875466
    [No Abstract]   [Full Text] [Related]  

  • 36. The inhibition of NADH oxidation in mammalian mitochondria by chloramphenicol.
    Freeman KB; Haldar D
    Biochem Biophys Res Commun; 1967 Jul; 28(1):8-12. PubMed ID: 4293710
    [No Abstract]   [Full Text] [Related]  

  • 37. Thiamine increases the specific activity of human liver branched chain alpha-ketoacid dehydrogenase.
    Danner DJ; Davidson ED; Elsas LJ
    Nature; 1975 Apr; 254(5500):529-30. PubMed ID: 1121328
    [No Abstract]   [Full Text] [Related]  

  • 38. [Regulation of carbohydrate metabolism in vivo. II. Action of ethanol].
    Nordmann R; Nordmann J
    Bull Soc Chim Biol (Paris); 1969 Sep; 51(4):791-8. PubMed ID: 4310157
    [No Abstract]   [Full Text] [Related]  

  • 39. THYROID-HORMONE TRANSAMINASE AND OXIDASE IN RAT-KIDNEY MITOCHONDRIA.
    NAKANO M; DANOWSKI TS
    Biochim Biophys Acta; 1964 Apr; 85():18-28. PubMed ID: 14159298
    [No Abstract]   [Full Text] [Related]  

  • 40. [Transamination reaction between 4-aminobutyric acid and alpha-ketoglutaric acid in certain rat tissues].
    CACIOPPO F; PANDOLFO L; DI CHIARA G
    Boll Soc Ital Biol Sper; 1959 May; 35(9):465-7. PubMed ID: 13662432
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.