These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

27 related articles for article (PubMed ID: 5041099)

  • 1. Virtual elimination of the interference of unstirred water layers on intestinal sugar transport kinetics by use of the tissue accumulation method at appropriate shaking rates.
    Lherminier M; Alvarado F
    Pflugers Arch; 1981 Jan; 389(2):155-8. PubMed ID: 7193857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal and local concentration changes in diffusion layers at cellulose membranes due to concentration differences between the solutions on both sides of the membrane.
    Lerche D
    J Membr Biol; 1976 Jun; 27(1-2):193-205. PubMed ID: 933158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shift of pH-absorption curves.
    Winne D
    J Pharmacokinet Biopharm; 1977 Feb; 5(1):53-94. PubMed ID: 15094
    [No Abstract]   [Full Text] [Related]  

  • 4. [Properties of an asymmetrical carrier model for the transport of sugars by human erythrocytes].
    Geck P
    Biochim Biophys Acta; 1971 Aug; 241(2):462-72. PubMed ID: 5159793
    [No Abstract]   [Full Text] [Related]  

  • 5. A model for erythrocyte sugar transport based on substrate-conditioned "introversion" of binding sites.
    LeFevre PG
    J Membr Biol; 1973 Jan; 11(1):1-19. PubMed ID: 4705661
    [No Abstract]   [Full Text] [Related]  

  • 6. The kinetics of selective biological transport. IV. Assessment of three carrier systems using the erythrocyte-monosaccharide transport data.
    Miller DM
    Biophys J; 1968 Nov; 8(11):1339-52. PubMed ID: 5696216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Kinetic analysis of the carrier mechanism for the sugar transport by the erythrocyte membrane. Mobility of the free and loaded carrier].
    Fenstermacher J; Wilbrandt W
    Helv Physiol Pharmacol Acta; 1966; 24(2):C16-9. PubMed ID: 5973813
    [No Abstract]   [Full Text] [Related]  

  • 8. The role of unstirred layers in control of sugar movements across red cell membranes.
    Naftalin RJ
    Biochim Biophys Acta; 1971 Jun; 233(3):635-43. PubMed ID: 5113922
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of unstirred layers on the measurement of transport rates in individual cells.
    Miller DM
    Biochim Biophys Acta; 1972 Apr; 266(1):85-90. PubMed ID: 5041099
    [No Abstract]   [Full Text] [Related]  

  • 10. A comparison of recent suggestions for the functional organization of red-cell sugar-transport sites based on kinetic observations.
    LeFevre PG
    Ann N Y Acad Sci; 1975 Dec; 264():398-413. PubMed ID: 769644
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanisms of nonelectrolyte transport.
    Kotyk A
    Biochim Biophys Acta; 1973 Sep; 300(2):183-210. PubMed ID: 4584138
    [No Abstract]   [Full Text] [Related]  

  • 12. Carrier and non-carrier models for sugar transport in the human red blood cell.
    Lieb WR; Stein WD
    Biochim Biophys Acta; 1972 Apr; 265(2):187-207. PubMed ID: 4555470
    [No Abstract]   [Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.