These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 5042093)

  • 21. The oxidation of straight and branched alkanes by Pseudomonas strains.
    THIJSSE GJ; ZWILLING-DE VRIES JT
    Antonie Van Leeuwenhoek; 1959; 25():332-6. PubMed ID: 13837856
    [No Abstract]   [Full Text] [Related]  

  • 22. Oxidation products formed from gaseous alkanes by the bacterium Pseudomonas methanica.
    LEADBETTER ER; FOSTER JW
    Arch Biochem Biophys; 1959 Jun; 82(2):491-2. PubMed ID: 13661983
    [No Abstract]   [Full Text] [Related]  

  • 23. [Lipids of a paraffin-oxidizing strain of Pseudomonas aeruginosa].
    Koronelli TV; Komarova TI; Denisov IuV
    Mikrobiologiia; 1982; 51(4):673-7. PubMed ID: 6815432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.
    Lopes Ferreira N; Mathis H; Labbé D; Monot F; Greer CW; Fayolle-Guichard F
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):909-19. PubMed ID: 17347817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Keto-acid production by paraffin-oxidizing yeasts].
    Finogenova TV; Lozinov AB; Belikov VM; Ermakova IT; Muntian LN; Safonova EN
    Mikrobiologiia; 1968; 37(1):38-43. PubMed ID: 5732049
    [No Abstract]   [Full Text] [Related]  

  • 26. [Hydrocarbon assimilation by bacterial cultures of Mycococcus species and Pseudomonas species].
    Spitsyna DN; Davidova EG; Gradova NB; Konovalov SA
    Prikl Biokhim Mikrobiol; 1974; 10(2):187-95. PubMed ID: 4830965
    [No Abstract]   [Full Text] [Related]  

  • 27. Bacterial oxidation of gaseous alkanes.
    LEADBETTER ER; FOSTER JW
    Arch Mikrobiol; 1960; 35():92-104. PubMed ID: 14414934
    [No Abstract]   [Full Text] [Related]  

  • 28. Epoxidation of olefins by hydroperoxo-ferric cytochrome P450.
    Jin S; Makris TM; Bryson TA; Sligar SG; Dawson JH
    J Am Chem Soc; 2003 Mar; 125(12):3406-7. PubMed ID: 12643683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A study of the properties of paraffin--oxidizing strains of Pseudomonas pyocyanea].
    Koronelli TV; Stepanova LN
    Mikrobiologiia; 1968; 37(3):460-5. PubMed ID: 4979371
    [No Abstract]   [Full Text] [Related]  

  • 30. [Complex effect of surface-active substances on the process of microbiological hydrocarbon oxidation].
    Kucher RV; Dzumedzeĭ NV; Khmel'nitskaia DL
    Mikrobiologiia; 1981; 50(6):1105-8. PubMed ID: 7329356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources.
    Durner R; Zinn M; Witholt B; Egli T
    Biotechnol Bioeng; 2001 Feb; 72(3):278-88. PubMed ID: 11135197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient catalytic oxidation of alkanes by Lewis acid/[Os(VI)(N)Cl4]- using peroxides as terminal oxidants. Evidence for a metal-based active intermediate.
    Yiu SM; Man WL; Lau TC
    J Am Chem Soc; 2008 Aug; 130(32):10821-7. PubMed ID: 18642814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The biochemical status of metabolites of alkane-utilizing Pseudomonas organisms.
    Bird CW; Molton P
    Biochem J; 1969 Oct; 114(4):881-4. PubMed ID: 5343806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of n-decene-1 from n-decane by resting cells of Candida rugosa.
    Iizuka H; Iida M; Fujita S
    Z Allg Mikrobiol; 1969; 9(3):223-6. PubMed ID: 5380071
    [No Abstract]   [Full Text] [Related]  

  • 35. [Petroleum production by microorganisms].
    Morikawa M; Imanaka T
    Tanpakushitsu Kakusan Koso; 1995 Jan; 40(1):52-60. PubMed ID: 7871184
    [No Abstract]   [Full Text] [Related]  

  • 36. [Hydrocarbon oxidation by germinating spores of several microscopic fungi].
    Zaĭchenko AM; Koval' EZ
    Mikrobiol Zh; 1969; 31(6):614-8. PubMed ID: 5405252
    [No Abstract]   [Full Text] [Related]  

  • 37. [Autotrophic arsenic oxidation by a Pseudomonas arsenitoxidans culture].
    Ilialetdinov AN; Abdrashitova SA
    Mikrobiologiia; 1981; 50(2):197-204. PubMed ID: 7242389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptative or constitutive nature of the enzymes involved in the oxidation of n-hexadecane into palmitic acid by Candida lipolytica.
    Nyns EJ; Auquière JP; Wiaux AL
    Z Allg Mikrobiol; 1969; 9(5):373-80. PubMed ID: 5382795
    [No Abstract]   [Full Text] [Related]  

  • 39. Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7.
    Kotani T; Kawashima Y; Yurimoto H; Kato N; Sakai Y
    J Biosci Bioeng; 2006 Sep; 102(3):184-92. PubMed ID: 17046531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of reconstituted biofilm composition on bacterial hydrocarbon-oxidizing activity].
    Zhurina MV; Strelkova EA; Plakunov VK; Beliaev SS
    Mikrobiologiia; 2008; 77(5):701-3. PubMed ID: 19004354
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.