These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 504301)

  • 21. The opiate antagonist, naloxone, does not affect descending inhibition from midbrain of nociceptive spinal neuronal discharges in the cat.
    Carstens E; Klumpp D; Zimmermann M
    Neurosci Lett; 1979 Mar; 11(3):323-7. PubMed ID: 229438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glutamate-induced analgesia: blockade and potentiation by naloxone.
    Urca G; Nahin RL; Liebeskind JC
    Brain Res; 1980 Jun; 192(2):523-30. PubMed ID: 7378801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Naloxone-induced suppression of the behavioral manifestation of serotoninergic system hyperactivation by beta-casomorphins-7 in mice].
    Zozulia AA; Meshavkin VK; Sokolov OIu; Kost NV
    Eksp Klin Farmakol; 2009; 72(2):3-5. PubMed ID: 19441718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The nucleus paragigantocellularis and opioid withdrawal-like behavior.
    Rockhold RW; Liu N; Coleman D; Commiskey S; Shook J; Ho IK
    J Biomed Sci; 2000; 7(3):270-6. PubMed ID: 10810247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Naloxone-reversible duplication by lanthanum of opiate analgesia effects on orofacial, lower body and central nociception.
    Keresztes-Nagy P; Rosenfeld JP
    Brain Res; 1981 Mar; 208(1):234-9. PubMed ID: 6258748
    [No Abstract]   [Full Text] [Related]  

  • 26. Naloxone lowers brain-stimulation escape thresholds.
    Sasson S; Kornetsky C
    Pharmacol Biochem Behav; 1983 Feb; 18(2):231-3. PubMed ID: 6835980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of polyinosinic-polycytidylic acid (Poly I:C) on naloxone-precipitated withdrawal in morphine-dependent mice.
    Chen L; Zhai H; Lu L; Chen S; Ning Y; Wang W
    Neurosci Lett; 2011 Jan; 487(3):341-4. PubMed ID: 20974220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for opioid and non-opioid forms of stimulation-produced analgesia in the rat.
    Cannon JT; Prieto GJ; Lee A; Liebeskind JC
    Brain Res; 1982 Jul; 243(2):315-21. PubMed ID: 7104742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Naloxone antagonism of phenoxybenzamine antinociception in the mouse tail stimulation test.
    Spiehler VR; Paalzow L
    Life Sci; 1979 Jun; 24(23):2125-32. PubMed ID: 481102
    [No Abstract]   [Full Text] [Related]  

  • 30. Electrical stimulation at traditional acupuncture sites in periphery produces brain opioid-receptor-mediated antinociception in rats.
    Chen XH; Geller EB; Adler MW
    J Pharmacol Exp Ther; 1996 May; 277(2):654-60. PubMed ID: 8627542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphine-induced straub tail response: mediated by central mu2-opioid receptor.
    Nath C; Gupta MB; Patnaik GK; Dhawan KN
    Eur J Pharmacol; 1994 Sep; 263(1-2):203-5. PubMed ID: 7821354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-specific naloxone blockade of brain self-stimulation duration.
    Freedman NL; Pangborn D
    Pharmacol Biochem Behav; 1984 Mar; 20(3):361-6. PubMed ID: 6608735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increasing the work requirements lowers the threshold of naloxone for reducing self-stimulation in the midbrain of rats.
    West CH; Schaefer GJ; Michael RP
    Pharmacol Biochem Behav; 1983 May; 18(5):705-10. PubMed ID: 6856645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Opiate antagonist, naloxone, strongly reduces analgesia induced by stimulation of a raphe nucleus (centralis inferior).
    Oliveras JL; Hosobuchi Y; Redjemi F; Guilbaud G; Besson JM
    Brain Res; 1977 Jan; 120(2):221-9. PubMed ID: 832121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of naloxone and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 and the protein kinase inhibitors H7 and H8 on acute morphine dependence and antinociceptive tolerance in mice.
    Bilsky EJ; Bernstein RN; Wang Z; Sadée W; Porreca F
    J Pharmacol Exp Ther; 1996 Apr; 277(1):484-90. PubMed ID: 8613958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of naloxone on trigemino-hypoglossal reflex inhibited by periaqueductal central gray stimulation in rats.
    Zubrzycka M; Janecka A
    J Physiol Pharmacol; 2000 Sep; 51(3):471-81. PubMed ID: 11016866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antagonism of stimulation-produced analgesia by naloxone and N-methyl-D-aspartate: role of opioid and N-methyl-D-aspartate receptors.
    Mehta AK; Halder S; Khanna N; Tandon OP; Sharma KK
    Hum Exp Toxicol; 2012 Jan; 31(1):51-6. PubMed ID: 21803783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catecholamines and endogenous opioids in ventral tegmental self-stimulation reward.
    van Wolfswinkel L; Seifert WF; van Ree JM
    Pharmacol Biochem Behav; 1988 Jul; 30(3):589-95. PubMed ID: 3211968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions between opioid-peptides-containing pathways and GABA(A)-receptors-mediated systems modulate panic-like-induced behaviors elicited by electric and chemical stimulation of the inferior colliculus.
    Calvo F; Coimbra NC
    Brain Res; 2006 Aug; 1104(1):92-102. PubMed ID: 16797498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of ICI204,448, naloxone methiodide and levocetirizine on the scratching behavior induced by a κ-opioid antagonist, nor-BNI, in ICR mice.
    Nakasone T; Wakuda H; Sugimoto Y; Kamei C
    Immunopharmacol Immunotoxicol; 2017 Oct; 39(5):292-295. PubMed ID: 28745076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.