These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 5043184)

  • 21. An allosteric model of hemoglobin.
    Shulman RG; Ogawa S; Hopfield JJ
    Cold Spring Harb Symp Quant Biol; 1972; 36():337-41. PubMed ID: 4508146
    [No Abstract]   [Full Text] [Related]  

  • 22. Kinetics of oxygen binding to human hemoglobin. Temperature jump relaxation studies.
    Ilgenfritz G; Schuster TM
    J Biol Chem; 1974 May; 249(9):2959-73. PubMed ID: 4828331
    [No Abstract]   [Full Text] [Related]  

  • 23. An allosteric model of hemoglobin. II. The assumption of independent binding.
    Shulman RG; Ogawa S; Hopfield JJ
    Arch Biochem Biophys; 1972 Jul; 151(1):68-74. PubMed ID: 5065171
    [No Abstract]   [Full Text] [Related]  

  • 24. Mechanism of the enhancement of the Bohr effect in mammalian hemoglobins by diphosphoglycerate.
    Riggs A
    Proc Natl Acad Sci U S A; 1971 Sep; 68(9):2062-5. PubMed ID: 5289365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of inositol hexaphosphate and other organic phosphates on the cooperativity in oxygen binding of human hemoglobins.
    Tyuma I; Imai K; Shimizu K
    Biochem Biophys Res Commun; 1971 Aug; 44(3):682-6. PubMed ID: 5123206
    [No Abstract]   [Full Text] [Related]  

  • 26. [Allosteric regulation of the oxygen affinity of human and bovine hemoglobins and hemoglobin polymers].
    Fetisova LV
    Gematol Transfuziol; 1987 Oct; 32(10):34-7. PubMed ID: 3428532
    [No Abstract]   [Full Text] [Related]  

  • 27. The effect of alteration of intracellular 2,3-DPG concentration upon oxygen binding of intact erythrocytes containing normal and mutant hemoglobins.
    Lian CY; Roth S; Harkness DR
    Biochem Biophys Res Commun; 1971 Oct; 45(1):151-8. PubMed ID: 5139918
    [No Abstract]   [Full Text] [Related]  

  • 28. The oxygen-binding intermediates of human hemoglobin: evaluation of their contributions to cooperativity using zinc-containing hybrids.
    Huang Y; Doyle ML; Ackers GK
    Biophys J; 1996 Oct; 71(4):2094-105. PubMed ID: 8889184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Why are there two kinds of chain in tetrameric hemoglobins?
    Ferreira R; Jacchieri SG
    J Theor Biol; 1984 May; 108(2):191-201. PubMed ID: 6748686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-specific model of hemoglobin cooperativity.
    Lee AW; Karplus M
    Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7055-9. PubMed ID: 6580628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A mathematical model for structure-function relationships in hemoglobin.
    Szabo A; Karplus M
    Biochem Biophys Res Commun; 1972 Jan; 46(2):855-60. PubMed ID: 5057911
    [No Abstract]   [Full Text] [Related]  

  • 32. Organic phosphates and ligand binding in hemoglobin.
    Gibson QH
    Biochem Biophys Res Commun; 1970 Sep; 40(6):1319-24. PubMed ID: 5511990
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of 2-3-diphosphoglycerate and ATP on ethyl isocyanide binding to human hemoglobin.
    Lo HH; Schimmel PR
    Biochim Biophys Acta; 1972 Apr; 263(2):304-8. PubMed ID: 5031159
    [No Abstract]   [Full Text] [Related]  

  • 34. Non-Allosteric Cooperativity in Hemoglobin.
    Bellelli A
    Curr Protein Pept Sci; 2018; 19(6):573-588. PubMed ID: 29086690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of cardiac disease on hemoglobin-oxygen binding.
    Woodson RD; Torrance JD; Shappell SD; Lenfant C
    J Clin Invest; 1970 Jul; 49(7):1349-56. PubMed ID: 5432370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple tension-displacement model for hemoglobin cooperativity.
    Groome LJ; Telotte JC
    Biophys J; 1979 Feb; 25(2 Pt 1):379-84. PubMed ID: 262394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of zeros of binding polynomials for tetrameric hemoglobins.
    Connelly PR; Robert CH; Briggs WE; Gill SJ
    Biophys Chem; 1986 Aug; 24(3):295-309. PubMed ID: 3768473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the energetics of proteins through structural perturbation: sites of regulatory energy in human hemoglobin.
    Pettigrew DW; Romeo PH; Tsapis A; Thillet J; Smith ML; Turner BW; Ackers GK
    Proc Natl Acad Sci U S A; 1982 Mar; 79(6):1849-53. PubMed ID: 6952235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. "Negative cooperativity" in models of regulatory enzymes with indirect cooperativity.
    Kurganov BI; Dorozhko AI; Kagan ZS
    Mol Biol; 1972; 6(6):643-6. PubMed ID: 4667571
    [No Abstract]   [Full Text] [Related]  

  • 40. The Hill coefficient: inadequate resolution of cooperativity in human hemoglobin.
    Holt JM; Ackers GK
    Methods Enzymol; 2009; 455():193-212. PubMed ID: 19289207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.